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Abstract⎯ Temperature changes are in the focus of climate research. There are many 
analyses available, but they rarely apply rigorous mathematics for assessing the results. 

The main approach of this paper is the dependent weighted bootstrap. It is a simulation 
method, where both the fitted regression and the dependency among the data are taken into 
account. We present a simulation study showing that for serially dependent data it is the 
most accurate in case of estimating the coefficient in a linear regression. 

This paper shows an analysis of the gridded European temperature data. We have used 
the 0.5° × 0.5° grid of daily temperatures for 68 years (from 1950 to 2017), created by the 
European Climate Assessment. We investigated the speed of the global warming by 
changing the starting point of the linear regression. The significance of the differences 
between the coefficients was tested by the dependent weighted bootstrap. We have shown 
that the acceleration was significant for large regions of Europe, especially the central, 
northern and western parts. 

The vast amount of results is summarized by a Gaussian model-based clustering, which 
is the suitable approach if we intend to have clusters that are spatially compact. The number 
of clusters was chosen as 13, by a suitably modified "elbow rule". This approach allows to 
compare the speed and acceleration of warming for different regions. The quickest warming 
in the last 40 years was observed in Central and Southwestern Europe, but the acceleration 
is more pronounced in Central Europe. 

 
Key-words: dependent weighted bootstrap, global warming, linear models, model-based 

clustering 
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1. Introduction 

Determining the speed of global warming is a very important and actual question, 
especially if significance of estimators is also tested. As mathematicians, we 
cannot give exact explanations for the changes, but we may try to reveal them and 
to estimate the statistical error of the estimates. This estimation is not easy at all, 
as in the data set there are various types of dependencies, which make the use of 
standard statistical techniques difficult. 

Our main aim is to find those mathematical methods, which are most suitable 
for checking the significance of our results. There are numerous works in the area 
(see, e.g., Lu et al., 2005), where possible changepoints are introduced to capture 
the nonlinearity of monthly U.S. temperature data. We are convinced that using 
daily observations is worth for the efforts, as they convey much more information 
than, e.g., monthly or annual data. 

Our approach is to capture the temporal changes by regression models, and 
then the spatial aspects can be taken into account by clustering. There are, of 
course, other approaches in the literature, where the spatial aspects are taken into 
consideration first (see, e.g., Jun et al., 2008), but our focus of attention is in the 
significance investigations for the univariate time series with complex and 
unknown dependence structure. For similar but monthly time series, Lund et al. 
(1995) investigated the so-called periodic correlation structure. Their approach 
results in general 3p parameters, where p is the period. In our case p = 365, thus the 
number of parameters would be uncontrollable - considering that all are to be 
estimated for every grid point. Our model has about 60 parameters for the 
observation sites, which seems to be a good compromise. 

The mathematical model in our case is the linear regression - not only for the 
whole, standardized data set, but for altogether 30 shorter data sets, which were 
got by omitting the first years sequentially, i.e., the kth set consists of the years 
(1950 + k, . . . , 2017). The main motivation behind this approach is that the actual 
changes are not easily captured by the commonly used functions (e.g., quadratic 
models cannot cope well with the complex structure of this data). Using this 
method we can detect if there is a change in the speed of the warming. For 
assessing the reliability of the results, we investigate different bootstrap 
approaches. We have to take care on the dependence in the data - the traditional 
solution to this phenomenon is the block bootstrap, covered in the book of Lahiri 
(2003). However, for the case of regression models, a new weighted bootstrap 
method has been developed by Wu (1986). A more recent approach by Shao (2010) 
is suitable for the case of dependent residuals - this is the one we used for assessing 
the reliability of the results and the significance of the change in speed of the 
temperature increase. 

We are also interested in the spatial patterns of the processes. Thus, in 
Subsection 2.2 we apply a Gaussian model-based clustering (see, e.g., Fraley and 
Raftery, 2007) to the sequence of estimated coefficients. 
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We give details of the used models in Section 2. Section 3 is devoted to a 
simulation study on the bootstrap methods. Section 4 is about our results for the 
modeling of the temperature data. In Section 5 we formulate the conclusions. 

2. Methods 

In this section we briefly introduce the used methods. There is no need to 
introduce the linear models, as they are well-known to everyone. However, in 
order to assess the accuracy of the results we got by them, we needed special tools, 
as the data are both serially and spatially dependent. These will be explained in 
detail below. 

2.1. Bootstrap 

Bootstrap is a resampling method that can be used for assessing the properties of 
the estimators. There are many variants of the original idea of Efron (1979). One 
approach, designed especially for assessing the reliability of regression models is 
the weighted bootstrap of Wu (1986). However, all these standard methods are 
suitable only for the case of independent and identically distributed errors.  In case 
of heteroscedasticity and/or dependency among the random error terms, the 
standard methods fail, as it is seen by our simulation study as well as in the 
classical paper of Singh (1981). 

The dependent weighted bootstrap is suitable for these cases by choosing a 
resampling method that is capable of reproducing the dependence of the original 
observations. This is a relatively new concept, first introduced by Shao (2010). The 
traditional tool for such cases was the block bootstrap, which itself has several 
variants. There are available algorithms for choosing the block size, which minimize 
the standard error of the bootstrap estimators (Politis and White, 2004). However, it 
is reported in Shao (2010), that the new dependent weighted bootstrap has more 
favorable properties. We also check the methods in case of the linear regression, 
when we assume dependency among subsequent residuals. It turns out – as shown 
by our simulations – that the confidence intervals, based on the proposed weighted 
dependent bootstrap, have better coverage properties in the investigated cases. 

In its original form (Wu, 1986), the weighted bootstrap sample was constructed 
from the estimated residuals of the regression model ri (i = 1, …, n, where n denotes 
the number of observations), by multiplying them with the weights wi, which were 
supposed to be i.i.d. (identically distributed), with E(wi) = 0 and Var(wi) = 1. These 
properties ensure that for the bootstrapped residuals wiri, we have E(wiri) = 0 and 
Var(wiri) = Var(ri). A natural choice may be the wi, for which P (wi = 1) = P (wi = 
−1) = 0.5, thus practically choosing the same residuals as observed, but with random 
signs. There are of course other possible choices for the distribution of w (for details 
see Wu, 1986). 
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 ̂

However, when the error terms are dependent, the simple method seen above 
does not work. The bootstrap data generating process must correspond to that of 
the observations. This can be achieved by the dependent weighted bootstrap, 
where the conditions E(wi) = 0 and Var(wi) = 1 still hold, but a dependence 
structure is assumed for the weights wi. In the original paper, Shao proposed a 
multivariate normal distribution, with covariance matrix 

 

 , = 	,  (1) 

 
where K is a kernel function and l is  a  suitable  norming  factor  (bandwidth).    
The  generation  of  many  dependent  normal  variates  having  such   a covariance 
structure can be realized using the circular embedding algorithm of Dietrich et al. 
(1997), which is implemented in the R package RandomFields. 

The theoretical properties (consistency) of the dependent weighted bootstrap 
were proved originally by Shao under somewhat strong conditions (m-dependency 
of the weights), applicable, e.g., to the triangular kernel function.  However, it has 
also been proved recently (Doukhan et al., 2015), that the method works for a 
simpler data generating process as well. Namely, the weights may come from an 

AR(1) series: = 	 	+ 	 (1	 − 	 ) 	, where εi is an i.i.d. sequence of 
normal distributions. The role of r is similar to that of l, they both determine the 
length of the memory in the sequence: a large r as well as a large l implies longer 
range dependence. Thus, the cases we investigate here have also favorable 
asymptotic properties. 

One important problem is yet to be solved: how should we choose the 
parameter l? We have faced a similar question in the paper of Rakonczai et al. 
(2014), where the block size of the bootstrap resampling had to be found. We 
determined it by the best fitting AR model (VAR in the bivariate case). The fit 
was measured by the variance of the estimator  (or the trace of its covariance 
matrix in the bivariate case). To be more exact, in Rakonczai et al. (2014), the 
block size was determined as the , for which the estimated trace of the bootstrap 
covariance matrix was the nearest to the one derived from the fitted VAR model 

 

 = 	argmin∈ 	 	 (	 ) − 	 	 ∗ ∗ ,  (2 )  

 
where ∗( ∗) 	= 	 ∗( ∗|X )	 (∗ refers to the bootstrap sample, i.e., the left 
hand side gives the covariance of the bootstrap sample based on block size b, 
under the observed sample X ). In this paper we have modified (2) on a way that 
the parameter was l from the kernel and to be able to estimate the variance of the 
mean, we fitted an AR(1) model to the data 
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 = 	argmin 	 (	 ) −	 	 ∗ ∗ .  (3 )  

 

2.2. Clustering 

Our data are spatio-temporal. Spatio-temporal data mining has been developed in 
the last few years (see for example Shekhar et al., 2011) or Chapter 10 in the book 
Giannotti and Pedreschi (2008). However, we prefer to use a simple, yet suitable 
and classical data mining tool, the clustering. The first idea for spatial clustering 
is to apply the density-based methods. However, it turned out that we have not got 
any valuable results by these methods. Thus, we rather applied the k-means 
clustering. This is a traditional, simple, and quick method even in our case of over 
20000 data points in the 30 dimensional space. The method turned out to be 
suitable for detecting areas sharing similar properties, thus, also the spatial aspects 
were included in the analysis, especially when we used the model-based 
clustering. Here it is assumed, that the observations come from a multivariate 
normal distribution, with different parameters. The main question is if the 
covariances of the clusters are equal or different, and if different, what is the 
difference. Volume, shape, and orientation are the three aspects considered. 

When applying the k-means clustering, it is a non-trivial question, how to 
determine the number of clusters. One may use the traditional elbow rule, based 
on the portion of the explained variance. The model-based clustering suggests a 
solution to this problem, as here an adapted version of the Bayesian information 
criterion (BIC) may be applied (see Fraley and Raftery, 2007). The method is 
implemented in the mclust package of R. BIC is traditionally defined here as the 
expression 

 
 	 = 	2	log( ) 	− 	 	log( ), 	

where L denotes the value of the likelihood function at the optimum, n is the 
number of observations, and m the number of parameters in the model (B is −1 times the "usual" BIC for regression model). So, in this approach the model 
with the largest BIC value is suggested to be chosen. However, in our case – most 
likely due to the vast amount of data – the BIC proposes a large number of clusters 
(around 100), so we came back to the old "elbow rule" and chose a clustering, 
after which the increase in the BIC is slowed down. 

In our case, the results clearly proved that the model-based approach resulted 
in identifiable areas as clusters, which is very much preferred. 
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3. Simulations 

First we checked the classical case, where the errors in the linear model are indeed 
independent and identically distributed. An independent sample with n = 100 from 
the model y = x + ε was simulated, with ε ∼ N (0; 1). The investigated methods 
were chosen so that the parameters are near to the ones used for the real data 
analysis: 

1. the simple Efron-type bootstrap; 

2. the weighted bootstrap for the residuals; 

3. the dependent weighted bootstrap with AR(1) structure for the weights and 
normal innovations, as wn = 0.9wn−1 +	√0.19ηn, where ηn is an i.i.d. standard 
normal; 

4. the dependent weighted bootstrap with multivariate normal weights, the 
covariance was given by σi,j = 1	 − 	 | 	 − 	 |/  for l = 25. 

It can be seen from Table 1, that both the Efron-type and the independent 
weighted bootstrap give accurate results, while the intervals based on the two 
dependent weighted bootstrap methods are too narrow, which underlines that their 
application is unnecessary, if independence can be accepted. However, the 
difference is not too large. 

 
 
 
Table 1. The effect of bootstrap type on the estimated confidence interval for the trend 
coefficient (now 1) in case of i.i.d. normally distributed error structure. For the dependent 
weighted bootstrap, the AR(1) coefficient was 0.9. The dependence for the multivariate 
normal weighted case was given by Eq.(1) with the triangular kernel. The number of 
repetitions was n = 500 

 
 
 
 
Next we have simulated sequences of length n = 23360 (the number of 

observations in our data set) with AR(1) structure for the residuals with r = 0.812 
(the average of our estimators) and a trend coefficient of 8.6 ∗ 10−5 (again a typical 
value for our data set). The repetition size was 500, and we compared the 
performance of the three bootstrap methods, including the block-bootstrap with 

Method 
conf.bound 

Theoretical 
value 

Efron 
 

indep. 
weighted 

AR(1) 
weighted 

Mvnorm 
weighted 

lower 0.931 0.933 0.934 0.947 0.952 

upper 1.066 1.065 1.065 1.051 1.045 
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the optimal block size, based on the algorithm of Politis and White (2004). The 
results are shown in Table 2, containing 105-times the estimated values. Here we 
can observe the superiority of the weighted bootstrap, as it reproduces the 
theoretical quantiles the best – and the differences here are much more substantial 
than those of Table 1. 

 
 
 
Table 2. 105 times the theoretical and estimated quantiles for the trend coefficient in case of 
normally distributed AR(1) error structure with r = 0.812 and a trend coefficient of 8.6 ∗ 
10−5. The block bootstrap is too conservative with extreme quantiles; the independent 
weighted bootstrap on the other hand is too optimistic. The dependent weighted bootstrap 
(with the AR(1) dependence, determined by Eq. (3) turned out to be the best. The number 
of repetitions was 500. 

method quantile 0.025 0.05 0.25 0.5 0.75 0.95 0.975 

AR(1) process 6.64 6.95 8.05 8.53 9.12 10.11 10.43 

block bootstrap 5.34 5.64 7.72 8.86 10.39 12.19 12.62 

indep. weighted boot 7.62 7.75 8.30 8.61 8.94 9.41 9.50 

dep. weighted boot 6.74 7.14 8.13 8.77 9.40 10.22 10.47 

 
 
 

4. Applications 

Temperature changes are in the focus of attention since global warming became a 
major threat to the ecosystem on Earth. There is a tremendous amount of 
information available on the subject (see, e.g., Weart, 2017 and the references 
therein), showing that the temperature sequences have started to rise from as early 
as 1960s. There are opinions about the link between NAO (North Atlantic 
Oscillation) index and low frequency variability of the climate (see, e.g., Cohen 
and Barlow, 2005). In our previous manuscript (Hajas and Zempléni, 2018) as a 
comparison, we have also investigated the residuals, after having removed the 
effect of the daily NAO index on the temperature time series. This effect was not 
substantial, but the use of these data allowed for checking the robustness of the 
results. 

The used observations are 68 years of daily temperature data of the European 
Climate Assessment from 1950 to 2017 (E-OBS, http://www.ecad.eu). We have 
used the 0.5° × 0.5° grid data, available for Europe and parts of Northern Africa. 
This gridded database can be considered as a standard for climate analysis (see 
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Haylock et al., 2008). Its quality has been evaluated in Hofstra et al. (2009), and 
the results show that it may be considered reliable for most of Europe. However, 
especially in the African and Near Eastern region, there are missing periods of 
various length, which have to be taken into account. An earlier version of the same 
temperature data set was used in Varga and Zempléni, (2017), where the changes 
in the bivariate dependence structure were analyzed. 

We have not investigated the time series in detail, but it is obvious that 
seasonality is its most important feature. So first we have standardized the data 
for every day of the year by simple nonparametric polynomial (Loess) smoothing, 
using both first- and second-order standardization for each grid point separately: 	 = 	 ( 	− )/ , where T = 365 and 1 ≤ t ≤ 365 represents the day of 
the year. mt and st is the smoothed mean and standard deviation for day t, 
respectively. 

These standardized daily data were used as a basis for the simple linear 
regression: = 	 ( 	+ 	 ) 	+ 	 . We are interested in the steepness of the 
regression line (measured by the estimated coefficient αˆ), as well as in the 
strength of the model (as shown by the coefficient R2). These parameters were 
calculated for the data we have got by omitting the first k years (k = 1, …, 30): 
i.e., in the kth equation we consider data from year k + 1 till 68, so the last model 
corresponds to approximately the last 40 years. This approach is motivated by the 
fact that the time series exhibit many features like abrupt changes or temporal 
decrease (especially in the first half of the data set), that are not possible to be 
captured by a seemingly simple quadratic regression. 

The maximum value of the estimated regression coefficients together with 
the time of their occurrence is shown for each grid point in Fig. 1. We see that 
these maximal values occur for most of the cases at the very end of the 
investigated period. We have checked the reliability of the results for a grid of 
10° × 10° (the black rectangle on the right hand panel of Fig. 1) (using the 
weighted dependent bootstrap), and it turned out that for over 66% the grid points, 
at least 95% of the simulations gave at least k = 27 as the time point of the 
maximum, showing that the high values of the right hand side of Fig. 1 have not 
just been resulted by chance. 

A similar plot for the strength of the model is Fig. 2. Not surprisingly, we 
see the larger values mostly in the regions with higher coefficients. The low values 
of R2 are quite natural, as there are many more nonlinear disturbances in the 
weather, compared to the relatively slow but steady global warming. It is 
interesting that for large areas of Western Europe we see an early occurrence, while 
the typical time points for Central and Northern Europe are again the late ones. 
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Fig. 1. Maximum of the regression coefficients for the grid points (left) and the time point 
of their occurrence (30 is the latest, right). On the right panel, a black rectangle shows the 
region, where the reliability of the results was checked. 

 
 
 
 

 
Fig. 2. The maximal R2 value of the linear regression for the grid points (left) and the time 
point of their occurrence (30 is the latest, right). 

 
 
 
 
One interesting question is the significance of the results for the climate data we 

have analyzed. We performed a small study, were the linear coefficient was defined 
as 10−4 and a simple AR(1) structure for the residuals was assumed  

 



358 

 	= 	0.9 + 	√0.19 , 
 

where the sequence ηn was i.i.d. standard normal. Here we have also used the 
dependent weighted bootstrap method introduced in Subsection 2.1, and we 
focused on the steepness coefficient of the linear model. It turned out that the 
estimators like this are not significant for much shorter series, but n ≥ 30∗365 is 
sufficient for α = 0.05%. We have pursued this idea further by applying the 
dependent weighted bootstrap method to our data with r = 0.9, which was chosen 
as an average solution of Eq. (3). Having repeated the simulations 100 times for 
each data point for k = 10, k = 20, and k = 30, we have got 3 times 100 coefficients 
for the grid points (let us denote them by x10, x20, and x30), respectively. We may 
estimate the significance of the increase of the coefficients by calculating the 
percentage of the pairs where x30 is larger than, e.g., x10. Such values are plotted 
on Fig. 3. We can see that the speeding up is highly significant for Scandinavia and 
large parts of Central Europe. 
 
 
 

 
Fig. 3. Significance of the increase of warming, when the last 37 years (k = 30) are compared 
to the last 57 years (k = 10, left panel) and when the last 47 years (k = 20) are compared to 
the last 57 years (k = 10, right panel). 

 

 

 

We have performed a model-based k-means clustering of the grid points for 
the regression coefficients. Similar approach was used for a completely different 
data in Hajas and Zempléni (2017). The clearly preferred model was the so-called 
VVV (ellipsoidal covariance structure with variable volume, shape, and 
orientation). 
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Fig. 4 shows the time-development of the 13 cluster centers as well as the 
clustering itself. Every single value is positive, in accordance with the widely 
accepted phenomenon of the global warming. This phenomenon was investigated 
at European level (e.g., in van der Schrier et al., 2013), proving the existence of 
the warming, at least from about 1980. But we can show much more: the most 
affected areas can also be identified. Almost all of the curves show a clear upward 
trend, i.e., in almost all cases the coefficient increases as the number of omitted 
years from the beginning of the investigated period increases. This means an 
acceleration of the temperature increase in the last part of the investigated period. 
However, the changes in the coefficients (i.e., the speeding up of the temperature 
increase) are different in the clusters. 

 
 
 

 
Fig. 4. Cluster centers (left) and the clustering (right), based on the regression coefficients 
for the grid points (13 clusters, based on the Gaussian mixture method).  

 
 
 
The clusters differ mainly in their baseline level, the lines were otherwise 

quite parallel, at least up to k = 20, where an interesting change can be observed: 
in some regions the annual increase remains nearly constant, while for others the 
speeding up continues. It is of definite meteorological interest to investigate which 
areas belong to the individual clusters. We may state that Central Europe belongs 
to the clusters with the highest acceleration of the temperature increase. Also a 
quick estimated increase is observed in the western part of the Mediterranean 
region and on Iceland, while the European part of Russia showed the slowest 
increase. It is, however, interesting that for the Iberian Peninsula the temperature 
increase is quick, but it has not increased further in the last period – in accordance 



360 

to Fig. 1, which shows that in this region the maximal coefficient occurs earlier 
than for most part of Europe (see the orange curve on the left panel of Fig. 4). 
Similar pattern is observable for the northeast, where the increase is the slowest 
(see Figs. 1 and 3). 

The quick, further temperature increase in the already warm regions might 
be interesting from a medical point of view as well, since the further warming of 
this region might result in quicker than expected outbreaks of tropical epidemics 
like malaria. 

5. Conclusions 

As a conclusion, we can claim that to analyze the temperature data by focusing on 
the last decades was a sound idea, as we found interesting patterns in the gridded 
temperature data. The Gaussian model-based clustering has resulted in a clear 
pattern of different regions, which might be a useful start for further climatic 
research. 

The bootstrap is indeed an important tool in evaluating the significance of our 
results. However, one has to be aware of its properties. In case of dependent data, 
we have to take this dependence into account, when planning the bootstrap data 
generating process. We have compared the available methods and it turned out 
that the dependent weighted bootstrap is the most accurate in our case, where the 
dependency is simply modeled by an AR(1) process. The reason, that it 
outperforms the well-known block-bootstrap methods, might be the fact that here 
regression models were investigated. 
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