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Abstract⎯ In the last decades, wind power became the second largest energy source in 
the EU covering 16% of its electricity demand. However, due to its volatility, accurate 
short range wind power predictions are required for successful integration of wind energy 
into the electrical grid. Accurate predictions of wind power require accurate hub height 
wind speed forecasts, where the state-of-the-art method is the probabilistic approach 
based on ensemble forecasts obtained from multiple runs of numerical weather prediction 
models. Nonetheless, ensemble forecasts are often uncalibrated and might also be biased, 
thus require some form of post-processing to improve their predictive performance. We 
propose a novel flexible machine learning approach for calibrating wind speed ensemble 
forecasts, which results in a truncated normal predictive distribution. In a case study 
based on 100m wind speed forecasts produced by the operational ensemble prediction 
system of the Hungarian Meteorological Service, the forecast skill of this method is 
compared with the predictive performance of three different ensemble model output 
statistics approaches and the raw ensemble forecasts. We show that compared with the 
raw ensemble, post-processing always improves the calibration of probabilistic and 
accuracy of point forecasts, and from the four competing methods, the novel machine 
learning based approach results in the best overall performance. 
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1. Introduction 

The increasing challenges caused by consequences of air pollution and emission 
of greenhouse gases highlight the importance of transition of energy production 
towards renewable energy sources. Besides the classical hydro power, in the last 
decades, photovoltaic and wind energy fulfilled larger and larger part of energy 
demand. In 2020, the world set a new record by adding 93 GW of new wind 
turbines, so the total capacity of wind farms reached 744 GW covering 7% of 
the global electricity demand (World Wind Energy Association, 2021). In the EU 
(United Kingdom included), this proportion reached 16%, and the (world) 
record is held by Denmark, where wind accounted for 48% of the electricity 
consumed in 2020 (Wind Europe, 2021). However, wind energy poses serious 
challenges to traditional electricity markets, so accurate short range (between 
several minutes and a couple of days) prediction of wind power is of utmost 
importance for wind farm managers and electric grid operators. 

Although the relation between wind speed and produced wind energy is 
nonlinear and might also be nonstationary, more reliable wind speed forecasts 
obviously result in more reliable predictions of produced electricity. Wind speed 
forecasts, similar to other meteorological variables, are based on numerical 
weather prediction (NWP) models describing atmospheric processes via systems 
of partial differential equations. The state of the art approach is to run an NWP 
model several times with different initial conditions which results in an 
ensemble of forecasts (Bauer et al., 2015). Ensemble forecasts enable estimation 
of  situation dependent probability distributions of future weather variables, 
which opens the door for probabilistic weather forecasting (Gneiting and 
Raftery, 2005), where besides getting a point forecast, the forecast uncertainty is 
also assessed. 

Recently, all major weather centres operate their own ensemble prediction 
system (EPS), e.g., the 35-member Prévision d’Ensemble ARPEGE1 (PEARP) 
EPS of Méteo France (Descamps et al., 2015) or the 11-member Applications of 
Research to Operations at Mesoscale EPS (AROME-EPS; Jávorné Radnóczi et 
al., 2020) of the Hungarian Meteorological Service (HMS), whereas the largest 
ensemble size corresponds to the 51-member EPS of the European Centre for 
Medium-Range Weather Forecasts  (Buizza et al., 1998). Nowadays ensemble 
weather forecasts are also popular inputs to probabilistic forecasts of renewable 
energy (Pinson and Messner, 2018). 

However, ensemble forecasts often appear to be uncalibrated and/or biased, 
this feature has been observed  in several operational ensembles (see, e.g., 
Buizza et al., 2005). A possible solution is the use of some form of statistical 
post-processing (Buizza, 2018), where nonparametric methods usually capture 
predictive distributions via estimating their quantiles (see, e.g., Friederichs and 
Hense, 2007; Bremnes, 2019), whereas parametric post-processing approaches 
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provide full predictive distributions of the future weather quantities (see, e.g., 
Gneiting et al., 2005; Raftery et al., 2005). Recently, machine learning based 
methods also gain more and more popularity (see, e.g., Rasp and Lerch, 2018; 
Taillardat and Mestre, 2020); for a detailed overview of statistical calibration 
techniques we refer to Wilks (2018) or Vannitsem et al. (2021). 

Here we focus on a weather quantity important in energy production and 
investigate statistical post-processing of ensemble forecasts of wind speed 
measured at hub height (100m). In this context, Tailor et al. (2009) proposes 
kernel dressing with Gaussian kernel left truncated at zero (TN; truncated 
normal), while Messner et al. (2013) considers forecasts based on inverse power 
curves and applies a censored normal predictive distribution. However, any 
post-processing method appropriate for wind speed can be applied, and we 
concentrate on the ensemble model output statistic (EMOS; Gneiting et al., 
2005) approach, where the predictive distribution is a single parametric 
probability law with parameters depending on the ensemble forecasts via 
appropriate link functions. To account for the non-negativity and right skew of 
wind speed, Thorarinsdottir and Gneiting (2010) proposes a TN, Baran and 
Lerch (2015) a log-normal (LN), whereas Baran et al. (2021) a truncated 
generalized extreme value (TGEV) predictive distribution, and several methods 
for combining these probabilistic forecasts have also been developed (see, e.g., 
Lerch and Thorarinsdottir, 2013; Baran and Lerch, 2016, 2018). 

In the present paper we test the forecast skill of TN, LN, and TGEV EMOS 
approaches on AROME-EPS forecasts of hub height wind speed. We also 
introduce a novel model with TN predictive distribution, where using the ideas 
of Rasp and Lerch (2018) and Ghazvinian et al. (2021), location and scale 
parameters of the TN law are connected to the ensemble members via a 
multilayer perceptron neural network (MLP; Goodfellow et al., 2016). 
Compared with the case of fixed link functions, this latter approach allows more 
flexibility in modeling and straightforward inclusion of new covariates as well. 
Note that TN, LN, and TGEV EMOS approaches and some of their 
combinations have already been successfully applied for calibration of surface 
wind speed forecasts of the 11-member Aire Limitée Adaptation dynamique 
Développement International-Hungary Ensemble Prediction System of the HMS 
(Horányi et al., 2006), see, e.g., Baran et al. (2014). 

The paper is organized as follows. In Section 2, the detailed description 
of the AROME-EPS is given, while in Section 3, the applied post-processing 
methods and considered verification tools are reviewed. The results of our 
case study is presented in Section 4 followed by a concluding discussion in 
Section 5. 
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2. Data 

The 11-member AROME-EPS of the HMS covers the Transcarpathian Basin 
with a horizontal resolution of 2.5 km (Jávorné Radnóczi et al., 2020). It 
consists of a control member and 10 ensemble members obtained from 
perturbed initial conditions. The dataset at hand contains ensemble forecasts of 
wind speed (m/s) at hub height (100m) together with the corresponding 
validation observations for three wind farms in the northwestern part of Hungary 
(Ács, Jánossomorja, and Pápakovácsi) for the period May 7, 2020 to March 28, 
2021. All forecasts are initialized at 0000 UTC with a temporal resolution of 15 
minutes and maximal forecast horizon of 48 h resulting in a total of 192 forecast 
lead times.  

3. Post-processing methods and verification tools 

Non-homogeneous regression or EMOS is one of the most popular parametric 
post-processing approaches, probably due to its computational efficiency and 
excellent performance for a wide range of weather variables. EMOS models for 
different weather quantities differ in the parametric family specifying the 
predictive distribution; however, most of the existing EMOS models are 
implemented in the ensembleMOS package of R (Yuen et al., 2018). 

In the following sections let , , … ,  denote the 11-member AROME-
EPS hub height wind speed forecast for a given location, time, and lead time, 
where  =  is the control forecast, while , , … ,  correspond to the 10 statistically indistinguishable (and thus exchangeable) ensemble members , , , , … , ,  generated using random perturbations. Further, let  

denote the ensemble mean,  denote the mean of the 10 exchangeable 
members, and  and MD denote the ensemble variance and ensemble mean 
absolute difference, respectively, defined as  
 

 : = ∑ ( − ) 								and								MD:= ∑ ∑ℓ | − ℓ|. 
 

3.1. Truncated normal EMOS model 

Let ( , ) denote the TN distribution with location , scale > 0, and 
lower truncation at 0, having probability density function (PDF)  

 

 ( | , )≔ (( − )/ )/Φ( / ),								if		 ≥ 0, 
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and ( | , )≔ 0, otherwise, where  is the PDF; while Φ denotes the 
cumulative distribution function (CDF) of a standard normal distribution. The 
proposed TN EMOS predictive distribution for hub height wind speed based on 
the AROME-EPS ensemble forecast is  
 

 ( + + , + MD), (1) 
 

where , , , , ∈ ℝ. The same model is applied by Hemri et al. 
(2014) to model square root of 10m wind speed, and the suggested method is a 
slight modification of the TN EMOS approach of Thorarinsdottir and Gneiting 
(2010), where the square of the scale parameter is an affine function of the 
ensemble variance, that is = + . Exploratory tests with the dataset at 
hand show that neither modelling the square root of the data, nor linking 
location to the ensemble variance result in better forecast skill than the use of 
Eq. (1). 

3.2. Log-normal EMOS model 

As an alternative to the TN EMOS approach, we consider the EMOS model of 
Baran and Lerch (2015), where the mean  and variance  of the LN predictive 
distribution are affine functions of the ensemble members and the ensemble 
variance, respectively, that is  
 

 = + + 								and								 = + , 
 
where , , , , ∈ ℝ. The heavier upper tail of the LN distribution 
allows a better fit to high wind speed values. 

3.3. Truncated generalized extreme value EMOS model 

Another possible solution to address reliability of probabilistic forecasts for high 
wind speed is the use of the GEV EMOS approach proposed by Lerch and 
Thorarinsdottir (2013). The GEV distribution ℰ ( , , ) with location , 
scale > 0, and shape  is defined by CDF  
 

 ( | , , )≔ exp(−[1 + ( )] / ), 				if		ξ ≠ 0;exp(−exp(− )), 				if		ξ = 0, 
 
for 1 + ( ) > 0 and ( | , , )≔ 0, otherwise. However, as demonstrated 

by Lerch and Thorarinsdottir (2013) and Baran and Lerch (2015), the GEV 
EMOS model might assign positive predicted probability to negative wind 
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speed. To correct this deficiency, Baran et al. (2021) proposed to truncate the 
GEV distribution from below at zero and considered a TGEV predictive 
distribution ℰ ( , , ) with location , scale > 0, and shape  defined by 
CDF  

 ( | , , )≔ ( | , , ) ( | , , )( | , , ) , if		G(0|μ,σ, ξ) < 1;1, if		G(0|μ,σ, ξ) = 1, 
 
for ≥ 0, and ( | , , )≔ 0, otherwise. 

For the 11-member AROME-EPS, location and scale parameters of the 
TGEV EMOS model are  

 
 = + + 								and								 = + , 

 

with , , , , ∈ ℝ, while the shape parameter  does not depend on 
the ensemble members. In order to ensure a finite mean and positive skewness, 
the shape is kept in the interval ] − 0.278, 1/3[. 
3.4. Parameter estimation 

Parameter estimation in the TN, LN, and TGEV EMOS models described in 
Sections 3.1 – 3.3 is based on the optimum score principle of Gneiting and 
Raftery (2007). The estimates are obtained as minimizers of the mean value of a 
proper scoring rule over an appropriate training dataset. Here we consider one of 
the most popular proper scores in atmospheric sciences, namely the continuous 
ranked probability score (CRPS; Wilks, 2019, Section 9.5.1). Given a 
(predictive) CDF  and a real value (observation) , the CRPS is defined as  
 

 	CRPS( , )≔ [ ( ) − { }] d = E| − |− E| − ′|, (2) 
 
where  denotes the indicator function of a set , while  and ′ are 
independent random variables distributed according to  and having a finite first 
moment. CRPS is a negatively oriented score, that is the smaller the better, and 
the right-hand side of Eq. (2) implies that it can be expressed in the same units 
as the observation. Note that the CRPS for TN, LN, and TGEV distributions can 
be expressed in closed form (see Thorarinsdottir and Gneiting (2010), Baran 
and Lerch (2015), and Baran et al. (2021), respectively), which allows an 
efficient optimization procedure. 

A crucial issue in statistical calibration is the selection of training data. 
Here the different forecast horizons are treated separately, and we use rolling 
training periods, which is a standard approach in EMOS modeling. In this 
training scheme, parameters for a given lead time are estimated with the help of 



615 

corresponding forecast–observation pairs from the preceding  calendar days. 
Further, both regional (or global) and local EMOS models are investigated. In 
the regional approach, all data from the training period are considered together, 
providing a single set of EMOS parameters for all three wind farms. In contrast, 
local estimation results in different parameter estimates for different wind farms 
by using only data of the given location. In general, local models outperform 
their regional counterparts (see, e.g., Thorarinsdottir and Gneiting, 2010), 
provided the training period is long enough to avoid numerical stability issues 
(Lerch and Baran, 2017). 

3.5. Machine learning based approach to wind speed modeling 

As mentioned in the Introduction, based on works of Rasp and Lerch (2018) and 
Ghazvinian et al. (2021), we applied a machine learning approach to estimate 
the parameters of the predictive distribution in a TN model. In this case, instead 
of looking for the parameters , , , ,  in Eq. (1), location and 
scale are estimated directly, without assuming that they depend on the ensemble 
in a prescribed way. Practically this means, that some features derived from the 
ensemble (e.g., the control member, or the ensemble standard deviation) are 
used as inputs of a multilayer perceptron (MLP), while the trained network 
provides a two-dimensional vector corresponding to the location and scale 
parameters. Similar to the previous models, the network is trained by 
minimizing the mean CRPS over the training data. 

In an MLP. some hidden layers connect the input layer and the output one, 
the number of layers and the number of neurons in the different hidden layers 
are tuning parameters of the network. Starting from the first hidden layer, each 
neuron of the given layer computes a weighted sum of the values provided by 
the neurons in the previous layer, adds a bias, and via a so-called transfer 
function, applies a transformation to the result. 

In the present work we train an MLP with one hidden layer containing 25 
neurons, the applied transfer functions are the exponential linear unit (ELU; see 
e.g., Ghazvinian et al., 2021) function in the hidden layer, and the linear 
function in the output layer. After some experiments, in the final training we 
decided to use the control forecast, the mean of the exchangeable ensemble 
members, and the standard deviation of the 11 members as input features of the 
network. Based on Ghazvinian et al. (2021), to ensure the positivity of the 
location and scale parameters, their estimates are given by exp( ) and exp( ), 
where  and  are the values provided by the two neurons of the output layer. 

By the training of a network, the number of the training samples is always a 
critical point: a relatively small training set can easily result in overfitting, which 
means a weak performance on the test set. In order to avoid this problem, we apply 
a regional estimation, moreover, we do not handle the different lead times 
separately; for a given training period we train only two networks, one for the 0–
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24h forecasts, another for the 24–48h forecasts. We made a trial to take into 
account the lead time in the training by extending the features with a fourth one, 
containing the ranks of the lead times; however, this modification did not improve 
the predictive performance of the network. The lack of significance of the forecast 
horizon might be explained by the diurnal cycle in the ensemble standard deviation, 
which indicates a direct relation between forecast uncertainty and lead time. 

3.6. Verification tools 

As argued by Gneiting et al. (2007), the aim of probabilistic forecasting is to 
maximize the sharpness of the predictive distribution subject to calibration. The 
former refers to the concentration of the predictive distribution, whereas the 
latter means a statistical consistency between the validating observation and the 
corresponding predictive distribution. These goals can be addressed 
simultaneously using proper scoring rules quantifying the forecast skill by 
numerical values assigned to pairs of probabilistic forecasts and validating 
observations. In the case study of Section 4, for a given lead time, competing 
forecasts in terms of probability distribution are compared with the help of the 
mean CRPS over all forecast cases in the verification data. The improvement in 
terms of CRPS of a probabilistic forecast  with respect to a reference forecast 

 can be assessed with the continuous ranked probability skill score (CRPSS; 
see, e.g., Gneiting and Raftery, 2007) defined as  
 

 CRPSS ≔ 1− 	 	, 
 

where 	CRPS  and CRPS  denote the mean score values corresponding to 
forecasts  and , respectively. Here larger values indicate better forecast 
skill compared to the reference method. 

Calibration and sharpness can also be quantified by the coverage and 
average width of the (1− )100	%, ∈]0,1[, central prediction interval, 
where calibration is defined as the proportion of validating observations located 
between the lower and upper /2 quantiles of the predictive distribution. For a 
well calibrated forecast, this value should be around (1− )100	%, and in order 
to provide a fair comparison with the 11-member AROME-EPS,  should be 
chosen to match the nominal coverage of 83.33	% (10/12 × 100	%) of the raw 
ensemble. 

Simple graphical tools for assessing calibration of probabilistic forecasts are 
the verification rank histogram of ensemble predictions and its continuous 
counterpart, the probability integral transform (PIT) histogram. Verification rank is 
defined as the rank of the verifying observation with respect to the corresponding 
ensemble forecast (Wilks, 2019, Section 9.7.1), whereas PIT is the value of the 
predictive CDF evaluated at the observation (Wilks, 2019, Section 9.5.4). For a 
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properly calibrated ensemble, all ranks should be equally likely, while calibrated 
predictive distributions result in standard uniform PIT values. 

Finally, the accuracy of point forecasts, such as median and mean, is 
quantified with the help of mean absolute errors (MAEs) and root mean squared 
errors (RMSEs), respectively. 

4. Results 

We start our analysis by determining the appropriate training-period length for 
our post-processing approaches. We consider a fixed verification period from 
July 8, 2020 to March 28, 2021 (264 calendar days) and compare the forecast 
skill of both local and regional TN EMOS models estimated using 20,21, … ,60 
day rolling training-periods. Fig. 1 shows the mean CRPS taken over all forecast 
cases and lead times and the MAE of median forecasts as functions of the 
training-period length. Both plots clearly demonstrate that for longer training 
periods, the local TN EMOS is more skillful than the regional one. CRPS and 
MAE of the latter stabilize after day 51, while the corresponding scores of the 
local TN EMOS also seem to level off there. Hence, for TN EMOS modeling, a 
51-day training-period seems to be a reasonable choice, and the same training-
period length is applied for LN and GEV EMOS models as well. A detailed data 
analysis confirmed that this length is also appropriate for the machine learning 
approach of Section 3.5 (TN MLP), this choice of training data leaves a total of 
273 calendar days (period June 29, 2020 – March 28, 2021) for model 
verification. Further, as in general, local versions of the tested EMOS 
approaches slightly outperform the regional ones, thus, in what follows, only the 
scores of the local models are reported. 
 
 

 

Fig. 1. Mean CRPS of probabilistic (a) and MAE of median (b) forecasts for local and 
regional TN EMOS models as functions of training-period length. 
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Fig. 2a shows the mean CRPS of post-processed and raw ensemble 
forecasts as functions of the lead time, whereas in Fig. 2b, the corresponding 
CRPSS values with respect to the raw ensemble are plotted. In general, all post-
processing approaches outperform the raw ensemble for all lead times, but the 
advantage of post-processing decreases with the increase of the forecast horizon. 
The best overall CRPSS taken over all lead times and forecast cases belongs to 
the TN MLP model (0.111), followed by the local TN EMOS method (0.103); 
however, there are certain forecast horizons (especially around 20h and 23h), 
where the latter exhibits slightly better predictive performance. For the TGEV 
and LN EMOS approaches, these overall CRPSS values are 0.091 and 0.095, 
respectively. 

 
 
 

 
 

Fig. 2. Mean CRPS of post-processed and raw ensemble forecasts of wind speed (a) and 
CRPSS with respect to the raw ensemble (b) as functions of lead time. 

 
 
The improved calibration of post-processed forecasts can also be observed 

in Fig. 3a showing the coverage of the nominal 83.33% central prediction 
intervals for different lead times. The coverage of the AROME-EPS ranges from 
50% to 70%, and in general, increases with the increase of the lead time, 
whereas all post-processed forecasts for all lead times result in coverage values 
that are rather close to the nominal level.  In particular, there is no visible 
systematic difference in the coverage values of the three investigated EMOS 
models, whereas the TN MLP approach seems to exhibit some kind of diurnal 
cycle. However, as depicted in Fig. 3b, the cost of the better calibration should 
be paid in the deterioration of the sharpness. The raw ensemble produces far the 
narrowest central predictive intervals, there is no difference in sharpness 
between the competing EMOS models, whereas the diurnal cycle in sharpness of 
the TN MLP is completely in line with the corresponding coverage. Note that 
similar diurnal cycles can be observed in the ensemble standard deviation and 
ensemble mean difference as well. 
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Fig. 3. Coverage (a) and average width (b) of the nominal 83.33 % central prediction 
intervals of post-processed and raw forecasts as functions of lead time. 

 

 
 
 
While statistical post-processing substantially improves the calibration of 

probabilistic forecasts, it does not really effect the accuracy of point predictions. 
In Fig. 4a, the difference in MAE of the median forecasts of the various 
calibration methods from the MAE of the raw ensemble are plotted as functions 
of the lead time. Similar to the mean CRPS, models with TN predictive 
distribution show the best performance for all lead times; however, even the 
largest difference in MAE is less than 0.1 m/s. The same behavior can be 
observed in Fig. 4b displaying the difference in RMSE of the mean forecasts. 
This can indicate that the raw AROME-EPS forecasts are already unbiased and 
indeed, the mean biases of the ensemble mean and median taken over all 
forecast cases of the whole available period May 8, 2020 to March 28, 2021 and 
all lead times are just 0.136 m/s and 0.122 m/s, respectively, while the overall 
MAE equals 1.285 m/s and the overall RMSE is 1.669 m/s. 

 
 
 

 

Fig. 4. Difference in MAE of the median forecasts (a) and in RMSE of the mean forecasts 
(b) from the raw ensemble as functions of lead time. 
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Finally, Fig. 5 shows the verification rank histograms of raw and PIT 
histograms of post-processed forecasts for four different lead time intervals. The 
U-shaped verification rank histograms clearly indicate the underdispersive 
character of the raw ensemble; however, the dispersion improves with the 
forecast lead time. This behavior is completely in line with the increasing 
coverage and high sharpness of the raw forecasts (see Fig. 3). Further, the 
depicted rank histograms are rather symmetric, which is consistent with the 
small overall MAE and RMSE and illustrates the lack of bias in the raw 
ensemble. All post-processing approaches substantially improve calibration; 
models based on TN predictive distributions result in almost flat PIT histograms, 
whereas the histograms of TGEV and LN EMOS approaches indicate slight 
biases. Kolmogorov–Smirnov (KS) test rejects the uniformity of the PIT for all 
models; however, based on the values of the KS test statistic, one can provide a 
clear ranking of the methods. PIT values of the TN MLP approach fit best the 
uniform distribution, followed by the TN, TGEV, and LN EMOS models, which 
order nicely reflects the shapes of the corresponding histograms of Fig. 5. 

 
 

 

Fig. 5. PIT histograms of post-processed and verification rank histograms of raw 
ensemble forecasts of wind speed for the lead times 0-12h, 12-24h, 24-36h, and 36-48h. 
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Based on the above results, one can conclude that models with TN 
predictive distributions provide the best forecast skill, and the machine learning 
based TN MLP approach outperforms the TN EMOS model. Hence, one might 
be interested in the dissimilarities of the corresponding predictive distributions. 
According to Fig. 6a, there is no fundamental difference in the location, and the 
station-wise time series plots of this parameter also provide matching curves 
(not shown). Thus, the linear model of the location given in Eq. (1) seems to be 
optimal. A completely different picture can be observed in Fig. 6b, showing the 
mean of the scales of the TN predictive distributions as function of lead time. 
The diurnal cycle for TN MLP is far less pronounced than for the TN EMOS, 
and the corresponding time series (not shown) exhibit completely different 
behavior, too. Hence, the superior performance of the TN MLP approach is due 
to the more general modeling of the scale of the TN predictive distribution. 

 
 
 
 

 

Fig. 6. Mean of the location (a) and scale (b) of the truncated normal predictive 
distributions of TN EMOS and TN MLP models as functions of lead time. 

 
 
 

5. Conclusions 

We investigate post-processing of ensemble forecasts of 100m wind speed, as 
this variable is of crucial interest in wind energy production. Three different 
EMOS models based on truncated normal, log-normal, and truncated 
generalized extreme value distributions are considered, and we also propose a 
novel method where the probabilistic forecasts are obtained in the form of a 
truncated normal predictive distribution with parameters linked to the ensemble 
via a multilayer perceptron neural network. The forecasts skill of the competing 
calibration methods is tested on the 11-member AROME-EPS hub height wind 
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speed ensemble forecasts of the HMS for three wind farms in Hungary and 
verified against observations provided by the wind farm operators. Only short-
term predictions are considered with forecast horizons ranging up to 48 h with a 
temporal resolution of 15 minutes. Using the raw ensemble as reference, we 
compare the mean CRPS of probabilistic, MAE of median, and RMSE of mean 
forecasts, and the coverage of central prediction intervals corresponding to the 
nominal 83.33% coverage. We also study the shapes of the PIT histograms of 
the calibrated forecasts for different lead times and compare with the 
corresponding verification rank histograms of the raw ensemble. Based on our 
case study we can conclude, that compared with the raw ensemble, post-
processing always improves the calibration of probabilistic and accuracy of 
point forecasts. From the four competing methods, the novel machine learning 
based TN MLP approach exhibits the best overall performance; moreover, in 
contrast to the investigated EMOS models, it provides a single universal model 
for several forecast horizons. The superior performance of the TN MLP model is 
explained by its ability to represent more complex nonlinear relations between 
the ensemble forecasts and the parameters of the TN predictive distribution, and 
our results are consistent with the findings of Rasp and Lerch (2018) and 
Ghazvinian et al. (2021). 

The present work highlights several directions of potential future research. 
From the one hand, one might consider the machine learning approach to 
parameter estimation in the case of other predictive distribution families such as 
the LN and TGEV investigated here. From the other hand, a neural network 
allows a very flexible choice of input features, providing a simple and 
straightforward opportunity of involving predictions of other weather variables 
in wind speed modeling. 
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