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Editorial

Special Issue: 30-year anniversary of ALADIN cooperation

The ALADIN international cooperation had been initiated by Météo-France in
1990, and the Hungarian Meteorological Service (HMS) decided to join right at the
beginning. The first milestone of the cooperation was a short visit in Paris in
March, 1991, which was followed by the initial development phase of the ALADIN
numerical weather prediction (NWP) model in Toulouse. At that time, nobody had
an idea of the magnitude of the impact what this cooperation and model will have
on the participating meteorological services. ALADIN is not a single model, but a
modeling system, which encompasses various components like powerful data
assimilation, computationally efficient model dynamics, physical parameterization
packages tailored to different resolutions in mesoscale, a surface model, which can
be used online and offline, components of an ensemble prediction system, and a
regional climate model. Recently, two non-hydrostatic configurations of the
ALADIN model are used: AROME is developed specifically to run on convective-
permitting resolutions, while ALARO can also be used in intermediate resolutions
between the mesoscale and the convection-permitting scales. For the last 15 years
or so, the HIRLAM cooperation has been also using the ALADIN model (called
HARMONIE by them). The ALADIN, RC-LACE, and HIRLAM consortia decided
to develop AROME, ALARO, and HARMONIE on the same basis and principles
in the framework of the ACCORD consortium established in 2020. The ALADIN
model became the most commonly used NWP system in Europe. This Specia Issue
pays tribute to the 30 years of the ALADIN cooperation with special emphasis on
the role of the Hungarian Meteorological Service.

Originally, the ALADIN model was developed only for dynamical adaptation,
i.e., no separate data assimilation system was foreseen, the model initial conditions
(also the surface physiographic datasets) were taken from the global model by
sophisticated interpolation methods. Soon it was realized that a state-of-the-art
limited area model cannot live without an independent data assimilation system,
and therefore, data assimilation developments had been started. Now the 3D-Var
(three-dimensional variational data assimilation) scheme is widely used by the
participating institutes. Téth et al. gives an overview of the data assimilation work
in general and the latest developmentsin AROME at the Hungarian Meteorological
Service in particular. The article of Randriamampianina et al. summarizes some of
the data assimilation impact studies, which were performed by the ALADIN model
for the EUMETNET/EUCOS cooperation.

The use of the ALADIN model for ensemble prediction was emerged in the
early 2000s. While Smon et al. presents some results of ALARO via testing its
performance with different settings at 1-2 km resolution over Slovakia in some
convective cases, they also prove the added value of the so-called A-LAEF ensemble



system with respect to the single model runs. A-LAEF (operated and maintained by
the RC-LACE consortium) is based on the ALARO model and represents both the
initial condition and model uncertainties. The first Hungarian limited area ensemble
prediction system (LAMEPS) called HUNEPS became operational in 2008. One of
the complementary tasks needed to be completed was the statistical calibration of the
probabilistic forecasts. Different ensemble model output statistics (EMOS) were
intensively tested and optimized with specia focus on surface wind. In the paper of
Baran and Baran in this Specia Issue, EMOS is further tuned to improve higher
level wind forecasts of the convection-permitting AROME-EPS system. AROME-
EPS replaced its predecessor, ALARO-EPS in 2020 in Hungary. Its operational
forecasts are provided for wind farms to support their energy production estimates,
and the raw predictions will be completed with calibrated ensemble forecasts from
2022 onwards. Ensemble methods can be applied also in environmental impact
modeling as shown by Ferencz et al. In their study, AROME-EPS forecasts served
the meteorological inputs for the CHIMERE air chemistry model to quantify the
impact of the uncertainty coming from weather predictions compared to that of the
inaccuracies of emission input dataon air quality forecasts.

The mature NWP team and the availability of high-performance computer
system made it possible to start climate dynamics research in Hungary to provide
proper tools to explore regional climate change. The work started with adaptation
of regional climate models (RCM) in 2004: REMO developed by the Max Planck
Ingtitute in Hamburg and ALADIN-Climate in cooperation with M étéo-France and
the entire ALADIN project. Gradual establishment of the climate modeling activity
at OMSZ was exciting from the first RCM simulations (using ERA40 reanalysis as
lateral boundary conditions at the beginning!) via future projections and data
provision for climate impact studies in Hungary up to educating the users and
stakeholders to use probabilistic (climate) information. The paper of Ban et al. is
dedicated to recent results of ALADIN-Climate and their evaluation in context of
the European results (from EURO-CORDEX).

RCM outputs are provided not only for research and stakeholder partners of the
Hungarian Meteorological Service, but aso further meteorologica studies are carried
out based on these RCM data. Investigation of urban climate change started in 2010
with coupling the SURFEX/TEB surface model to ALADIN-Climate. Direct
description of processes over specific surfaces (like lakes, cities) requires at least akm-
scale grid distance, which is still beyond the current resolution of RCMs. SURFEX
(used in offline mode) is focusing on the relevant processes and widely applied both in
NWP and climate modeling in the ACCORD community. The model was carefully
validated in the last 10 years, and now it is ready for refinement of climate projections
as demonstrated by the paper of Gabriella Allaga-Zsebehaz.

Last but not least, athough formally the ALADIN cooperation might come to an
end and reincarnates into its new life with the introduction of the ACCORD
consortium, the modeling system will remain and evolve with us for long-long time.

Finally, we would like to express our gratitude to all authors contributing to
this special edition of |d6jarés as well as to the reviewers helping to improve the
scientific content of the papers.

Gabriella Szépszd and Andras Horanyi
Guest Editors
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Abstract— A local three-dimensional variational data assimilation (DA) system was
implemented operationally in AROME/HU (Application of Research to Operations at
Mesoscale) non-hydrostatic mesoscale model at the Hungarian Meteorological Service
(OMSZ) in 2013. In thefirst version, rapid update cycling (RUC) approach was employed
with 3-hour frequency inlocal upper-air DA using conventional observationsonly. Optimal
interpolation method was adopted for the surface data assimilation later in 2016. This paper
describes the current developments showing the impact of more conventional and remote-
sensing observations assimilated in this system, which reveals the benefit of additional
local high-resolution observations. Furthermore, it is shown that an hourly assimilation-
forecast cycle outperforms the 3-hourly updated system in our DA. Besides the upper-air
assimilation developments, asimplified extended Kaman filter (SEKF) was also tested for
surface data assimilation, showing promising performance on both the analyses and the
forecasts of AROME/HU system.

Key-words: data assimilation, simplified extended Kalman filter, rapid update cycle,
aircraft observations, atmospheric motion vectors
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1. Introduction

Accurate estimation of the atmospheric initial state is an essential prerequisite
for high-quality wesather forecasts. Global numerical weather prediction (NWP)
models use all information available about the Earth system to determine the
initial condition: different kinds of observations, previous weather forecasts
(called as background or first guess), and a priori physical information. They are
combined in a statistically optimal way based on their reliability using data
assimilation (DA) techniques. In the recent operational practice, three
algorithms are widely applied in global models: the optimal interpolation (Ol)
minimizes the quadratic difference between the analysis and the truth; the
variational method is based on minimization of a cost function measuring the
analysis departures from the observations and the first guess; the Kalman filter
method takes into account the flow-dependency of background errors.
Variational methods are mostly utilized for upper-air data assimilation (Fischer
et al., 2005; Courtier et al., 1994): in the 3-dimensional and 4-dimensional (3D-
Var and 4D-V ar) versions, the procedure looks for the best fit to background and
observations at the analysis time and along a trajectory, respectively. Ol is
employed in surface data assimilation (Mahfouf et al., 2000), as it is the
simplified extended version of the Kalman filter (SEKF) (de Rosnay et al., 2013;
Mahfouf, 2009) which allowsinvolving also satellite measurements in exchange
for its higher computational cost.

For limited area models (LAMSs), dynamical adaptation is aplausible way to
prepare initial conditions without complex and computationally expensive
methods. In this simple technique, the coarser-resol ution driving model fields are
interpolated onto the higher resolution target grid in theinitial time step. The first
limited area model of the ALADIN (Aire Limitée Adaptation dynamique
Développement InterNational) consortium was originally developed without data
assimilation, and in its earliest version at the Hungarian Meteorological Service
(OMSZ) theinitial conditions were created by dynamical adaptation (Horanyi et
al., 1996), i.e., interpolating the fields of the global NWP model of Météo-France,
ARPEGE (Action de Recherche Petite Echelle Grande Echelle) to the ALADIN
grid. Nevertheless, only local and dense observations ensure to have access to
those small-scale atmospheric features which are crucia for high-resolution
mesoscale westher forecasts. The incremental 3D-Var algorithm was
implemented to ALADIN, which looksfor the minimum of departure between the
analysis and the background field assuming that the background is a good
estimation of the analysis and the linearized version of the observation operator
can be used during the computation of the minimization. This is the standard or
regularized linear least squares problem (Fischer, 2007). The method was
introduced into the operational ALADIN version of OMSZ in 2005 (referred as
ALADIN/HU; Boloni, 2006). In the beginning, it assimilated only conventional
observations (SYNOP, TEMP, temperature, and horizontal wind components
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measured by aircrafts) 4 timesaday at 0, 6, 12, and 18 UTC, and it was gradually
extended with a variety of satellite data and wind profiler measurements
(Randriamampianina, 2006).

The AROME (Application of Research to Operations at Mesoscale) model
consists of the non-hydrostatic dynamical core of ALADIN, the atmospheric
physical parameterization of the Meso-NH research model, and the SURFEX
surface model (Seity et al., 2011). It has been running operationally at OM SZ over
adomain covering the Carpathian Basin with 2.5 km horizontal resolution and 60
vertical levels since 2010 (Szntai et al., 2015). The initial and lateral boundary
conditions (LBCs) were first taken from ALADIN/HU, benefiting from the
already existing coarser resolution LAM analyses. However, it was proven later
that the interpolated analysis does not contain reliable physical information on the
smallest scales resolved by AROME/HU and in addition, more observations can
be used at higher resolution. Therefore, the implementation of the local AROME
DA system was started and the upper-air 3D-Var system became operational in
2013, assimilating conventional data (Mile et al., 2015).

The 3D-Var approach assumes that all observations inside the assimilation
window are measured exactly at the analysis time generating increased
representation error in time. In order to be able to use more observations with
reduced temporal representation error, experiments have been started with hourly
analysis updates (i.e., rapid update cycle, RUC) in 2018 (Javorné Radnécz et al.,
2020).

The raw analysis often exhibits some imbalances which primarily originate
from inconsistencies between the observed mass and wind fields inducing high-
frequency oscillationsin the first hours of the forecasts. In ALADIN/HU, adigital
filter initialization (Lynch et al., 1997) is applied to the analysis, which removes
the high-frequency waves from the initial condition during a forward and
backward model integration. Thisfiltering techniqueis assumed to be detrimental
for the mesoscale spectrum of AROME model, thus not employed in
AROME/HU. Instead, a space consistent coupling is used, i.e., the LBC at the
initial time is provided by the AROME/HU analysis, which efficiently exempts
from high amplitude oscillating noises (Mile et al., 2015).

Representation of background error statistics has key importance in
variational methods, as the background error covariance matrix (the so-called B
matrix) controls the propagation of the information coming from observations to
the model grid and variables (Berre, 2000). The B matrix in ALADIN/HU was
originally estimated with the NMC method (NMC stands for National
Meteorological Center) that samples the forecast errors from a set of differences
between two forecasts valid at the same time, but at different ranges (Parish and
Derber, 1992). Later the ensemble technique was introduced, where the
background errors are approximated by subtracting the members of an ensemble
forecast generated with a set of data assimilation cycles (EDA) using perturbed
observations that induce a spread also among the first guess fields through the
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cycling (Boloni et al., 2014). The ensemble was first created by downscaling an
ensemble of ARPEGE lateral boundary conditions using ALADIN (Boloni,
2006), but later it was originating from the ALADIN ensemble prediction system
(EPS) of OMSZ (Hagel, 2009). EDA method was applied to compute the
background errors also in the case of AROME/HU: initially with downscaling the
ensemble of ALADIN LBCs and recently with a 5--member ensemble provided
by the convection-permitting AROME-EPS system (Javorné Radnocz et al.,
2020).

The initial conditions for the soil scheme in the early version of
ALADIN/HU were interpolated from the ARPEGE analysis fields. In 2008, the
CANARI optimal interpolation (Taillefer, 2002; T6th, 2004) was implemented,
in which the soil temperature and moisture analyses are calculated based on the
relationship between soil and near-surface variables. In AROME/HU, the surface
analysis of ALADIN/HU was interpolated to the 2.5 km resolution grid initialy,
while an improved version of the optimal interpolation was adopted in 2016. At
the same time, experiments were started with simplified extended Kalman filter
to exploit the advantage of the new observation techniques (like remote sensing
data).

An obvious way to develop a data assimilation system is to involve new
observations. Hourly analysis update requires to supply the assimilation with
frequently and reliably available data. The DFS (degrees of freedom for signal)
diagnostic tool (Cardinali et al., 2004) indicates the relative contribution of given
observations to the analysis. In a previous study (Mile et al., 2015), DFS scores
showed the large contribution of wind measurements and suggested the
importance of humidity-related observations. In the last few years, sensitivity
studies have been started in ALADIN/HU and more intensively in AROME/HU
to estimate the impact of atmospheric motion vectors derived from satellite
images, radial wind measured by meteorological radars, temperature, and wind
information registered by the radars of air traffic controllers (i.e., Mode-S
observations); radar reflectivity, zenith total delay (ZTD) observations of GNSS
(global navigation satellite systems), and humidity observed by aircrafts (Mile et
al., 2015, 2019; Fischer et al., 2017, 2018).

This paper aims to provide a comprehensive overview of current DA
developments. In Section 2, the operational DA system is described. In Section 3,
the local, experimental DA studies are represented applying conventional and
non-conventional observations, as additional Mode-S MRAR (Meteorological
Routine Air Report) data and satellite atmospheric motion vectors. Besides this,
the surface data assimilation and RUC related devel opments are also presented in
this Section. Finally, asummary of the recent resultsand further potential research
are provided.
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2. The operational data assimilation system of AROME/HU model

The data assimilation system of the operational AROME/HU model consists of
anincremental 3D-Var and an Ol technique for the upper-air and surface analysis,
respectively. Furthermore, this system composes a three-hourly updated forward
intermittent cycle called RUC (Benjamin et al., 2004; Mile et al., 2015, Szintai et
al., 2015). The LBCs are provided by the ECMWF/IFS (European Centre for
Medium-Range Weather Forecasts / Integrated Forecasting System) model at
hourly time intervals. The current operationa AROME/HU version has been
based on the cy43t2 model cycle since March 2021, and it has run at 2.5 km
horizontal resolution, with 60 hybrid pressure terrain-following vertical levels.
Most of the developments (except for SEKF) shown in this paper were carried out
with the previous operational model version, cy40tl (the ‘cy’ refersto the model
‘cycle’; cycle number 40 is derived from the corresponding IFS cycle, i.e., cy40,
on which AROME is based; IFS is jointly developed by ECMWF and M étéo-
France; and ‘t" refers to the model release specific to Météo-France, i.e.,
Toulouse; finally 1 refers to the release number).

The analyses of AROME/HU forecasts are updated three hourly at 0, 3, 6, 9,
12,15, 18, and 21 UTC. The AROME/HU 3D-Var system uses only conventional
observations from ground-based synoptic stations (SYNOP), radiosondes
(TEMP), zenith total delays (GNSS ZTD), and aircraft data (AMDAR and
MRAR). The assimilated observations, meteorologica parameters, and the date
of their operational implementations are summarized in Table 1. Most of the
observations (except for GNSS ZTD) are routinely received and preprocessed in
OPLACE (Observation Preprocessing system of RC LACE) hosted by the
Hungarian Meteorological Service (Trojakova et al., 2019).

Table 1: Assimilated observation types and parametersin AROME/HU operational system

Observation type Parameter Date of Operational implementation
SYNOP u,v,T2M,HU2M,z March 2013

TEMP uv,T,0,2z March 2013

AMDAR u v, T,q March 2013 (u, v, T) November 2016 (q)
Slovenian/ CzechMode-SMRAR  u,v, T November 2016 / March 2021

GNSS ZTD September 2018

Inour local data assimilation system, two kinds of analyses are prepared and
distinguished based on the length of cut-off time: short cut-off and long cut-off
(Boloni, 2006). This is the time interval of observations collection for data
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assimilation. Theaim of using short cut-off analysisisto provideinitial conditions
for operational model prediction as quickly as possible. The long cut-off analysis
is prepared later for the same network time with longer waiting time for the
observations, this analysis is used as an initial condition for the next first guess.
In the recent AROME/HU version, this short cut-off timeis set to +/- 90 minutes.

The operational AROME/HU version runs 8 times a day and provides
forecasts up to 48 hours for main terms (0O, 6, 12, and 18 UTC) and 36 hours for
additional terms (3, 9, 15, and 21 UTC).

3. Surface data assimilation developmentsin AROME/HU model
3.1. Optimal interpolation

In the IFSYARPEGE/ALADIN model family, the optimal interpolation method
has been used for data assimilation purposes for a long time. Meanwhile, the
variational assimilation scheme became paramount for upper-air DA allowing the
use of remote-sensing observations, however, the Ol approach is still employed
for surface analysis by many operational centers. The land surface assimilation
based on Ol consists of the quality control of conventional observations, the 2 m
analysis of temperature and relative humidity, and the corresponding correction
of surface parametersusing 2 mincrements (Giard and Bazle, 2000). For the2 m
analysis, the Ol method solves the analysis equation for each grid point
individually assuming that only a limited number of observations influences one
grid-point. The correction of surface parameters is done differently in ALADIN
and AROME models because of the applied different surface parametrization
schemes. In ALADIN model, the so-called ISBA (Interaction Soil Biosphere
Atmosphere) scheme (Noilhan and Planton, 1989; Noilhan and Mahfouf, 1996) is
used, while in AROME model, a more advanced, i.e., an externalized surface
schemeis utilized, which is called SURFEX (Masson et al., 2013).

The first local DA system in AROME was introduced operationally with
variational upper-air data assimilation replacing the former downscaled ALADIN
initial conditions (Boloni, 2006; Mile et al., 2015). Although the downscaling
procedure remained for the AROME surface initialization, the use of ALADIN
surface analyses continued. Such a dependence on the ALADIN system was not
optimal in an operational AROME system, therefore, the experimentation of
AROME surface DA using the Ol method (Ol-main) was started as well. Various
observing system experiments have been carried out for the summer and winter
seasons and different weather situations. Verification results revealed that the
operational configuration with downscaled ALADIN surface has usually wet and
cold bias in AROME near-surface forecast parameters, while with Ol-main,
AROME shifted towards the dry and warm bias changing dlightly the diurnal
cycleof surface parameters during thefirst 24 h of the model forecast (not shown).
Moreover, the verification of precipitation forecasts with AROME OIl-main
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surface analysis showed mostly positiveimpact in particul ar case studies (summer
and winter) and a short summer period as well (Fig. 1). After six months of
surface spin-up, the AROME surface assimilation with Ol-main became
operational in 2016.

Fig. 1. Symmetric extremal dependency index (SEDI) verification skill score for 12 h
accumulated precipitation forecast comparing AROME operational (COOP) system
without surface data assimilation and with AROM E experiment using Ol-main surface data
assimilation (ARPO). Verification against conventional SY NOP observations (period June
130 20, 2016).

3.2. Smplified extended Kalman filter

The exact initialization of the soil variables is a very crucia point to provide
precise numerical weather prediction (NWP) forecasts. |naccurate soil moisture
content and soil temperature can lead to significant forecast errors of the screen-
level atmospheric variables, 2 m air temperature (T2M), and 2 m rel ative humidity
(HU2M) (Hess, 2001). Several methods have been developed to minimize errors
in soil parameters. In this study, SEKF proposed by Mahfouf et al. (2009) istested
using AROME/HU cy43t2. SEKF allows assimilation of both conventional
(screen-level) and non-conventional (satellite) observations to produce surface
analysis. ASCAT soil moisture and SPOT/VGT leaf area index (LAI) non-
conventional satellite observations were assimilated by several authors (Barbu et
al., 2014; Albergel et al., 2017; Rudiger et al., 2010). These studies demonstrated
the benefit of joint assimilation of soil moisture and LAI by using the multi-patch
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version of SURFEX. It was shown, that the assimilation worked effectively, but
the impact of the assimilation on the vegetation phenology and the water and
carbon fluxes varied from season to season.

In EKF, dynamically changing coefficients are used, and the analysis is
obtained as:

xq = xp + Ky —Hxp), )
K = BHT(HBHT + R), )

where X, is the analysis (so-called control variables: TG1, TG2, WG1, WG2), X,
isthe result of a previous model run, y isthe observation (T2M, HU2M), # isthe
non-linear observation operator, which transforms control variables from model
space into observation space. H matrix is the linearized observation operator, K
is the Kalman-gain matrix that represents the relative importance of the error of
the observation concerning the prior estimate. B and R are the covariance matrices
of the background errors and the observation errors, respectively. In this study,
the simplified version of the EKF, namely SEKF is used, meaning the background
covariance matrix B does not evolve with time. The elements of H (caled
Jacobian matrix), are calculated by finite differences. Perturbing each component
(%) of the control vector x, the elements of matrix H are composed for each
integration i:

H, = 2% A3)

ij - ax}'

In this study, SEKF is used as control vectors of the water contents and
temperatures of two soil layers (superficial (WGL1, TG1) and root-zone (WG2,
TG2)) propagated by SURFEX three-layer soil scheme (superficial 0-1 cm, root
zone 0-2 m, and deep soil 2-3 m). The observation terms are screen-level T2M
and HU2M. The Jacobian matrix is the following:

oT2M oT2M 0T2M  0T2M
0TG1 0TG2 owWG1 0wWG2
H= . (4)
OHU2M 0HU2M 0HU2M O0HU2M
JdTG1 dTG2 IwG1 IWG2

The small perturbations (with magnitude 10° or less) lead to a good
approximation of the linear behavior (Mahfouf, 2009), and the Jacobian
perturbations are assigned 10 for the soil water content and 10 for the soil
temperature in our configurations. The assimilation window is set to 3 hours. In
the analysis cycle, SURFEX is run severa times, firstly to get the reference
forecast, then the perturbed runs of the control variables.
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In this study, atest run was performed and validated. The experiment |asted
from July 9 to 31, 2020 (starting with a 2-week spin up period from June 25,
2020). Forcing files were required for offline SURFEX runs (i.e., radiation,
precipitation, wind, humidity, temperature, and pressure), which were coming
from AROME/HU inline forecasts. The wind, humidity, temperature, and
pressure values correspond to the lowest model level of AROME/HU, which is
currently 9 m.

Pointwise verification was executed for both periods against SYNOP and
TEMP observations. The verification of 2 m temperature forecasts shows alarge
improvement for the nighttime hours with SEKF, and the large warm bias during
the nights was reduced considerably (Fig. 2). SEKF was able to improve the2 m
temperature analysis throughout the whole period (Fig. 3, left). However, its
daytime forecasts over Hungary do not differ significantly from the Ol-main ones
(Fig. 3, right).

OUTCruns 12 UTC runs

Fig 2. Bias (dashed line) and RM SE (solid line) of 2 m temperature forecasts in the 0 and
12 UTC runs from July 9 to 31, 2020. Blue: cy43 with SEKF, orange: cy43 with Ol-main,
red: cy40 with Ol-main.

Analysis and observation 12-hour forecast and observation

Fig. 3. Evolution of 2 m temperature analysis and 12-hour forecast in the 0 UTC runs and
observations (green) from July 9 to 31, 2020. Blue: cy43 with SEKF, orange: cy43 with
Ol-main, red: cy40 with Ol-main.
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July 2020 had warm and overal rainy weather in the Carpathian Basin,
where spatiotemporal distribution of precipitation was extreme. It is a typical
problem in AROME/HU that the minimum temperature is usually overestimated
and the maximum temperature is underestimated in the dry and warm anticyclonic
periods. The case study of July 15, 2020 indicates that the 2 m temperature
analysiswasinaccurate using Ol-main (Fig. 4, right). More accurate analysiswas
provided by SEKF, especialy in the central part of the country (Fig. 4, middle).
At the same time, the 12-hour forecast of SEKF resulted in an unrealistic warm
pattern over the south part of the domain (Fig. 5, middie).

Ol-main SEKF SYNOP

Fig.4. 2 m temperature analysis in AROME/HU cy43 with Ol-main and SEKF,
observationsat 0 UTC on July 15, 2020.

Ol-main SEKF SYNOP

Fig. 5. 12-hour forecast of 2 m temperaturein AROME/HU cy43 with Ol-main and SEKF,
observationsat 12 UTC on July 15, 2020.

SEKF produced very dry soil in comparison with Ol-main (Fig. 6). This

issue is able to generate the above mentioned 2 m temperature overestimation in
the south during the day.
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Ol-main SEKF

Fig. 6. Root-zone soil moisture (WG2) analysis at 0 UTC on 15 July, 2020 for Ol-main
and SEKF.

Theevolution of WG2 analysis can beseenin Fig. 7 for agiven point marked
with ablack circlein Fig. 6. The soil moisture content decreased very rapidly by
using SEKF, however, Ol-main did not change drastically the soil moisture
values. The main soil texture is sand (73%) in this area, so the soil moisture
reflects immediately on the variability of the precipitation.
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Fig. 7. Evolution of soil moisture (WG2) and precipitation (black) for SEKF (blue) and
Ol-main (red).
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Fig. 8 shows anaysis minus guess (A-G) incrementsfor soil temperature and
soil moisturein different analysistimes summed for the whole period and all grid
points over thedomain. The TG2 increment isbigger for the nighttime and smaller
for the daytime periods in the case of SEKF. For Ol-main the TG2 increments are
small and consistent. In contrast, the WG2 increments are large for daytime and
smaller for nighttime for both methods. The WG2 increments are similar and
comparable with each other.
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Fig. 8. Soil temperature (TG2) and soil moisture (WG2) incrementsfor all of thegrid points
over the domain from July 9 to 31, 2020 for SEKF (blue) and Ol-main (red).

To conclude, SEKF provides apositive impact on the analyses and the short-
range forecasts as well. However, further investigations are still needed to find
the best possible combination of the assimilation parameters, like observation,
background errors, and the perturbation size of the Jacobians.

4. Upper-air data assimilation developmentsin AROME/HU model
4.1. Investigation of rapid update cycle

The main goal of the rapid update cycling (RUC) approach is to employ more
observations with reduced representation error in time, which would serve as a
basisfor the enhancement of data assimilation by including radar dataassimilation
soon (Mileet al., 2015). Thisstudy was carried out with AROME/HU cy40t1 with
different assimilation window lengths. The cut-off time in the case of RUC was
reduced to 30 minutes instead of 90 minutes, which is used in the operational 3-
hourly updated DA cycle.

In this study, two 30-day test periods had been chosen. The first was awinter
period covering al days between January 8 and February 6, 2017. The second
period was a spring period from May 4 to June 2, 2019, including numerous
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convective events inside the model domain. Each model run had started at O, 6,
12, and 18 UTC analyses and performed 12-hour forecasts. The assimilation cycle
was started six days earlier than the first long forecast to provide an appropriate
first guess field for the beginning of the experiments. Some modifications were
made in the configuration settings, e.g., the assimilation cycle frequency was set
to 1 hour and the cut-off time was shrunk to +/-30 minutes accordingly.
Meanwhile, the surface assimilation cycle frequency was set to be adjustable, i.e.,
in these experiments 1-, 3-, and 6-hourly updated surface data assimilation
were applied. In the last two experimental setups, (called
AROME_combo_lhourly surf3, and AROME_combo_1hourly surf6 hereafter),
the asynoptic surface analyses were initialized from previous model forecasts
without taking into account surface observations. The following four
configurations were tested for both periods:

e AROME_ 3hourly represents the original settings of operationa
AROME/HU;

e AROME_Zlhourly represents 1-hourly DA cyclefor 3D-Var and surface data;

e AROME_combo_lhourly surf3 consists of a combination of 1-hourly
updated upper-air assimilation cycle with 3D-Var and 3-hourly updated
surface assimilation cycles with surface data;

e AROME_combo_lhourly surf6 is the same as AROME_combo_lhourly -
surf3 but the surface assimilation is updated every 6 hours.

To evauate the results provided by four configurations, two different
verification approaches were applied. Standard verification methods (RMSE,
bias) were used for 2 m temperature forecasts (Figs. 9-10), and SAL verification
method was used for precipitation in the spring case. SAL verification method
provides an objective quality measurefor forecasted precipitation fields compared
to radar observations as three distinct components are used, namely structure,
amplitude, and location (Wernli et al., 2008). In order to get a comprehensive
picture of al three components, the central statistic approach was applied
(Table 2). Better performing cases are closer to the center, therefore, a given
percentage of cases (5%, 10%, 20%, and 50%) can be covered by a shorter radius.

The results suggest that AROME_1hourly performs better than
AROME_3hourly in the case of 2 m temperature and dew point temperature.
Higher accuracy was provided by reduction of surface assimilation cycle
frequency (AROME_combo_lhourly surf3, AROME_combo_1hourly surf6).

Meanwhile, considering precipitation, there is no significant difference
between the configurations as SAL verification shows balanced performance for
each setting (Table 2).
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Fig. 9. RMSE of 2 m temperature for each configuration in the function of lead-timein the
winter period.

Fig 10. Bias of 2 m temperature for each configurations in function of lead-time in winter
period.



Table 2: SAL results of each configuration for spring case. Lower radius values indicate
better performance on precipitation forecasts. Green cells represent the best performance,
redcells respresent the worst.

| 00 UTC | 06 UTC
AROME_3hourly 0.391 0.570 0.475
AROME_1hourly 1.075
AROME_combo_1hourly_surf3 0.373 1.117 0.325
AROME_combo_1hourly_surf6 0.570
AROME-3hourly 0.684
AROME-1hourly 0.450 0.514
AROME-1hourly_surf3 0.648 1.094 0.369 0.484 0.643 1.159
AROME-lhourly_surf6 0.647

The biggest difference between the configurations can be seen on January
29, 2017. AROME_3hourly has more than five degrees Celsius RMSE, but
AROME_combo_lhourly surf3 and surfé have only around one degree Celsius
RMSE (Fig. 11). Onthisparticular day (Fig. 12), the big differenceinthe RMSE,
in favor of AROME_combo_surf3 can be explained by the lack of cloud cover in
AROME_3hourly and AROME_1hourly (Fig. 13). This usually happens in the
Carpathian Basin when low-level clouds develop and remain during wintertime.
In this situation, the NWP models usually are not able to serve accurate forecasts.

Fig. 11. RMSE of 2 m temperature for 12 UTC runs at O time step.
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Fig. 12. Temperature fields provided by different configurations comparing to
measurements at 12 UTC, on January 29, 2017.

Fig. 13. Cloud cover fields provided by different configurations comparing to satellite
observation at 12 UTC, on January 29, 2017.
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Further examination was performed with increments of soil temperature
(TG1, TG2) and soil moisture (WG1, WG2) in order to get a clear picture of the
unexpected behavior of the model. The increments and soil variables were
examined from January 18 to 31, 2017. Soil temperature increments looked
normal, however, soil moisture increments were 0 during the whole period (not
shown). This means, that the soil moisture was driven by the model only, no actual
correction by the assimilation was performed, meanwhile, all configurations
yielded different soil moisture contents. Further investigation is necessary to get
the final conclusions.

4.2. Impact of Aircraft Mode-SMRAR data in AROME/HU

High resolution and high-density aircraft data are important and unmissable to
improve the data assimilation system. Mode-S MRAR data can be used similarly
to conventional AMDAR data and have similar quality aswell. They are gathered
through interrogation of suitable aircraft using specific (Mode-S TAR) radars,
which means that only aircraft equipped with Mode-S transponders is able to
return meteorological data. Smaller fraction of aircrafts is equipped for MRAR
data, which contains specific meteorological parameters, like temperature and
wind, but this relatively small amount of data is extremely valuable for data
assimilation, as it contains meteorological data of similar quality as that of
AMDAR data (Strajnar, 2012).

For the AROME/HU model, Slovenian Mode-S MRAR data was the first
available for assimilation purposes. These observations are disseminated through
the common preprocessing platform OPLACE (Trojakova et al., 2019) since
2015. The first experiments in Hungary have started in the following year. In a
case study, improved precipitation fields were experienced, and over a longer
period, results showed mainly neutral impact with some improvement in the bias
of wind gust and ETS score of precipitation. These data were introduced
operationally at the end of 2016. Since 2019, Mode-S MRAR datafrom the Czech
Republic are aso available in OPLACE, which are also ready for assimilation. In
case of Hungarian measurements, the air traffic control provided raw data, which
has to be preprocessed in the first step. Fig. 14 shows the area covered by the
various Mode-S data.
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Fig. 14. Mode-S data collected by the Czech (red), Hungarian (black), and Slovenian (blue)
radars over the AROME/HU domain.

4.2.1. Impact of Czech Mode-Sdata in AROME/HU

Two experiments were carried out to investigate the impact of Czech Mode-S
MRAR data assimilation on the quality of the forecast. The first experiment
covered awinter period (December 1 to 19, 2019), while the second one covered
a summer period (June 1 to 30, 2020). Both experiments were based on the
operational AROME/HU and the only difference was the inclusion of Czech
Mode-S data, obtained from the OPLACE server. The two experiments differ
from each other in regards to the forecast length (24 and 36 hours for the winter
and summer periods, respectively) and the run hours (0, 6, 12, and 18 UTC runs
in the winter experiment, and 0, 9, and 12 UTC runsin the summer experiment).

Observation monitoring shows that only asmall fraction of the total number
of Czech Mode-S dataiis active in the experiments (Fig. 15), whichislikely due
to the horizontal thinning. In the case of the winter experiment, the number of
active Czech Mode-S data is very similar to the number of AMDAR data, which
makes a reasonable comparison of their impact. In the case of the summer
experiment, however, the number of Czech Mode-S observationsisextremely low
(Fig. 15), including several days with zero observations. This probably indicates
the severe effect of the COVID-19 pandemic on the number of flights, and makes
it much more difficult to evaluate the summer experiment.

It can be concluded that the assimilation of Czech Mode-S data improves
dightly the forecast skill of AROME/HU. Fig. 15 shows that the impact of the
Mode-S dataset was quite substantial for specific days, at least for the summer
period, but the difference is usually much smaller.

538



Fig. 15. Number of Czech Mode-S MRAR data over the AROME/HU domain for the
summer (left) and the winter (right) experiment. Green and red columnsrepresent the active
and rejected observations, respectively.

Pointwise verification was performed for both periods against SYNOP and
TEMP observations. The verification results show small improvement for the
winter period, when scoresare usually very closeto the operational ones, although
a dight improvement can be detected in most of the cases. A remarkable, albeit
small positive impact can be seen in precipitation forecasts (Fig. 16).

Fig. 16. ETS score of 12-hour accumulated precipitation in the 18 UTC runs from
December 1 to 19, 2019. Red line: experiment with Czech Mode-S data, black line:
experiment with Hungarian Mode-S data, green line: reference experiment without any
Mode-S data.
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For the summer period, the results are more varied, and show greater
differences compared to the ones seen in the winter period. This can be attributed
to the fact that there was a much greater amount of precipitation in the summer
period. A case study of a convective event also shows that in specific cases, the
inclusion of Mode-S data can significantly improve the precipitation forecast,
especially regarding the spatial distribution of the amount of precipitation
(Fig. 17). Verification scores are overall neutral, but in some cases, a significant
improvement was obtained, especially for precipitation (Fig. 18). Other surface
variables, however, show little or no improvement (not shown), therefore, the
results are quite similar to the ones seen in the winter experiment.

Fig. 17. 3-hour precipitation forecast of the experiment using Mode-S data (left), reference
run (middle), and the observed precipitation (right) at 12 UTC, on June 21, 2020.

Fig. 18. ETS score of 12-hour accumulated precipitation in the 9 UTC runs from June 1 to
30, 2020. Red line: experiment with Czech Mode-S data, black line: reference run.

Regarding the upper-air variables, verification results are similarly varied.
The inclusion of Mode-S MRAR data improves the forecast of some upper-air
variables considerably, such as wind speed on different atmospheric levels
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(Fig. 19), but in most cases, the improvement is smaller. Other variables, such as
upper-air temperature or relative humidity show similar improvement, but in some
cases, the verification results for these variables are worse than those yielded by
the reference run.

Fig. 19. Bias (solid line) and RM SE (dashed line) of 500 hPa wind speed in the 12 UTC
runs from June 1 to 30, 2020. Black and red lines represent the reference run and the
experiment using Mode-S data, respectively.

In conclusion, the assimilation of Czech Mode-S MRAR data has a small,
but in most cases positive (or neutral) impact on AROME/HU forecasts. In the
case of the summer experiment, the small differences can be attributed to the low
number of active observations. The impact is greater at the upper atmospheric
levels (for both experiments), while smaller on the surface. The assimilation of
the Czech Mode-S MRAR data has been introduced operationally in AROME/HU
from March 2021.

4.2.2. Impact of the Hungarian Mode-S MRAR dataset in AROME/HU

As a result of the positive experience with the Czech MRAR dataset, the
Hungarian MRAR observations have aso been investigated. Since the collection
of Hungarian Mode-S datawas started in November 2019, a proper preprocessing
was needed on the raw dataset before their assimilation trial. Our first test period
covered by the Hungarian MRAR data was between November 25, 2019 and
March 31, 2020. First, aformat conversion of the dataset was necessary to share
the same format as other MRAR data distributed by the OPLACE system. Then a
statistical quality filtering was applied, i.e., whitelisting procedure using an
adopted criteria system through a passive assimilation cycle (Table 3). We only
modified the minimum number of the measured data according to the flight
numbers in the Hungarian flight area (Table 4).
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Table 3. The applied whitelisting criteria.

Temperature  Wind speed Wind direction

Mean 1K 1m/s 10°
Standard deviation 2K 5m/s 100°

Minimum number

. 1000 1000 1000
of observations

Table 4: Changes in the number of measurements and flights due to the whitelisting. Test
period: November 25, 2019 to March 31, 2020.

Temperature Number of Wind Number of
P flights (speed and direction) flights
Total number 799452 238 798904 238
After statistical 741480 (92.7%) 114 740962 (92.7%) 114
check
After quality check 577700 (72.3%) 75 507576 (63.5%) 61

The test forecasts with the quality-controlled MRAR dataset were running
between December 1 and 18, 2019. Significant part of the Hungarian MRAR data
has been rejected in the assimilation, only a few hundreds of them remained.

Only small differences have been detected in comparison with the reference
upper air wind forecasts, which are more apparent in the 12 UTC runs, when there
are more flights (Fig. 20). The use of Hungarian Mode-S MRAR data has a
positive impact on the 2 m temperature and relative humidity analyses leading to
small improvements in precipitation, relative humidity, total cloud cover, and
wind gust forecasts. For other forecast variables, the impact is rather neutral.

Fig. 20. RMSE (dashed line) and bias (solid line) of wind speed forecasts (left: 925 hPa,
right: 500 hPa) at the 12 UTC runswith assimilated Hungarian M ode-S measurements (red)
and reference forecast (black) for December 1-18, 2019.
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To introduce the Hungarian Mode-S MRAR data into the operational
assimilation, a further experiment is necessary on a period not (or less) affected
by the pandemic.

4.3. Impact of AMDAR-humidity in AROME/HU

In 2015 and 2016, nine L ufthansaaircrafts were equi pped with WV SS-11 humidity
sensors (WMO, 2019), and the measured data became part of the standard
AMDAR report. Asupper-air humidity observations in the assimilation system of
AROME/HU are currently limited to radiosondes and GNSS ZTD, AMDAR-
humidity dataisimportant, especially, during the ascending or descending phases
when thevertical humidity structure of the atmosphere is measured by the aircraft.
Thefirst experiments with AMDAR-humidity at OMSZ began in early 2016, and
it was included in the operational assimilation system of AROME/HU in autumn
2016.

The impact of AMDAR-humidity on AROME forecasts was tested on a
summer and winter period of one month each and on selected case studies.
Verification scores show a generally neutral impact. Some small improvements
can be observed for cloud cover in the first forecast hours and for upper-air
humidity, especially for forecasts starting at 9 and 15 UTC, when no radiosonde
observations are available on the AROME/HU domain (not shown).

Radiosonde and aircraft humidity data were compared when both
observation types were available. Visua check of vertical profiles shows a good
agreement between the two measurements (not shown). When a single specific
humidity profile from AMDAR report was assimilated, the vertical profiles of the
first guess and the analysis indicated that the humidity profile is closer to the
observations, but without these measurements thisis not the case (Fig. 21).



Fig. 21. Vertica profiles of specific humidity of AMDAR (green), first guess (red),
analysis without AMDAR-q (black), and analysis with AMDAR-q (blue) at 18UTC, on
March 25, 2016 over Budapest.

For case studies involving convection, impact of AMDAR-humidity can be
more pronounced. Fig. 22 shows AROME/HU forecasts for a day with intense
summer convection. It can be noted that AMDAR-humidity improvesthe forecast
of convective precipitation in the first forecast hours. convective cells missing in
the control run over the southern part of Hungary are well forecasted in the run
using AMDAR-humidity.

Fig. 22. Hourly precipitation sumsat 17 UTC, on June 13, 2016. Right: Radar observation;
left: AROME/HU run without AMDAR-humidity; middle. AROME/HU run with
AMDAR-humidity (both forecasts started at 15 UTC on the same day).



Due to the COVID-19 pandemic in 2020, the air traffic has changed
dramatically, which has affected the density of AMDAR data, as well as the
quality of the forecasts (Ingleby et al., 2020). As Fig. 23 shows, a few
measurements arrived over the AROME/HU domain during the European
springtime lockdown, and although the number of observations began to increase
during the summer, it has been gradually decreasing since autumn. Only a few
aircraft are equipped with humidity sensors, so in the current situation,
unfortunately, AMDAR humidity observations can be assimilated very rarely in
the model.

Fig. 23. Temperature (upper left), wind (upper right), and humidity (bottom) measurements
over AROME/HU domain based on AMDAR reports from January to December, 2020.

4.4. Impact of atmospheric motion vectors

Atmospheric motion vectors (AMV) are retrieved from consecutive satellite
images tracking coherent features thus estimating atmospheric wind at certain
levels. AMV s have been used in data assimilation since the 1990s (Schmetz et al..,
1993). The European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) provides hourly AMV products (geowind from now on)
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using Meteosat Second Generation (MSG) visible, water-vapor, and infrared
channel data (Borde et al., 2014). These data are routinely received and
preprocessed for OPLACE at the Hungarian Meteorological Service (OMSZ).

The Satellite Application Facility on Nowecasting and Short-Range
Forecasting (NWCSAF) provides a software package to calculate products
supporting nowcasting locally. One of these products is the high resolution wind
(HRW) (Garcia-Perada, 2018) which is generated at OMSZ. HRW (from now
on hrwind) is calculated using MSG visible, water-vapor, and infrared channel
data.

AMVs are successfully used in both global and regiona NWP models
(Forsythe et al., 2014). OMSZ has been operationally assimilating geowind in
ALADIN-HU for many years (Randriamampianina, 2006). Experimental
assimilation of both geowind and hrwind data were made in AROME/HU for
different periods using the same settings described in Mile et al., (2015). During
the spring and summer experiments, we observed a very small, mostly neutral
impact of the AMV datafor the surface parameters (temperature, humidity, wind,
pressure — not shown). In the convective period, asmall, rather positive effect can
be seen for the surface wind gust (Fig. 24).
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Fig. 24. Bias (solid line) and RM SE (dashed line) of wind gust forecastsin the 0 UTC runs
from July 5to August 7, 2019 as afunction of lead time. Red and black lines: AROME/HU
with and without AMVs, respectively.

In the precipitation, larger differences could be observed with and without
AMVs. Fig. 25 shows the SEDI parameter of 24-hour precipitation amount. For
days with very small and large precipitation amounts, a positive impact can be
seen, while for moderate precipitation amounts, the reference model run
performed better.
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Fig. 25. SEDI of 24-hour precipitation forecasts in the 0 and 12 UTC runs from July 5 to
August 7, 2019 as afunction of precipitation amount at 24 (red), 36 (green), and 48 (blue)
time steps. Dashed and solid lines: AROME/HU with and without AMV's, respectively.

In Fig. 26 an example is shown, where cells with small precipitation were
better formed when AMV s were assimilated. In this case, both the reference and
the test version struggled to forecast the right location of the precipitation.

Fig. 26. 2-hour forecast of hourly precipitation without (left) and with (right) AMVs at
2 UTC, on July 27, 2019. Hourly precipitation sum based on radar dataat 2 UTC, on July
27,2019 (middle).

For the winter period, the impact of the used AMV's was mostly neutral for
the surface pressure, wind speed, and wind gust. For the 2 m temperature and dew
point, we observed aslightly negative effect (Fig. 27). Verification for the vertical
levels was also done, where we could see a positive impact on wind speed
(Fig. 27). However, since only a small number of radiosonde measurements are
available besides 0 and 12 UTC over AROME/HU, the significance level of those
resultsis not very high.
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Fig. 27. Bias (solid line) and RMSE (dashed line) of 2 m temperature (upper left), dew
point (upper right), and wind speed at 500 hPa (bottom) forecasts in the 0 UTC runs from
December 1 to 18, 2019 as a function of lead time. Black and red lines: AROME/HU
without and with AMVs, respectively.

For all experiments, the used blacklisting settings (Mile et al., 2015) caused
arelatively low number of active AMVs (Fig. 28). Additiona experiments were
configured and run to increase the number of active AMVs, and to check their
distribution and characteristics. One experiment (called AMV 8 hereafter) was for
the activation of mid-tropospheric AMV s, which datawere blacklisted along time
ago assuming their height assignment is less accurate, and another experiment
(called AMVA hereafter) was carried out to allow even more previously
blacklisted data into the assimilation system. Table 5 describes the different
settings and blacklisting details.
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Fig. 28. Number of AMV observations over the AROME/HU domain from December 1 to
18, 2019. The numbers of blacklisted, rejected, and active observations are shown with
blue, red, and green color.
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Table 5: Blacklisting settings.

Setting Reference AMV8 AMVA
Quality index < 85 % inactive inactive inactive
Data where p>700 hPa over land inactive inactive active
Data where p<700 hPafor VIS inactive inactive active
Data between 300 and 850 hPa inactive active active
Data where p>400 hPa for WV inactive inactive active

Fig. 29 shows that both AMVA and AMV 8 runs activated more AMV s than
the reference. AMV A uses more observation at lower levels, which may result in
discrepancies due to orography. Observation minus background (O-B) statistics
show no suspicious feature between 800 and 350 hPa (Fig. 30), so proceeding
with AMV 8 settings seems to be a better choice in the future.
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Fig. 29. Number of active AMV observations over the AROME/HU domain from July 5

to August 7, 2019 for theinitial experiment (top), for experiment AMVA (middle), and for
experiment AMV 8 (bottom).

549



Fig. 30. The vertical distribution of the active observations for the initial experiment (left),
for experiment AMV8 (middle), and for experiment AMVA (right) over the AROME/HU
domain from July 5 to August 7, 2019.

5. Summary and conclusions

Thelatest developments of the AROME/HU data assi milation system were shown
in this paper. First of al, the current operational DA system was described with a
focus on the locally assimilated observations and special interest in the
preparation mechanism of the analysis and forecast.

Then surface data assimilation developments were described. It was shown,
that both the Ol-main and the SEKF provided a positive impact on the screen-
level parameters compared to the dynamical adaptation of AROME/HU,
especialy for nighttime periods. Very promising results were demonstrated by
applying a 1-hour RUC configuration compared to the 3-hour ones. Thereliability
of the analyses and short-range forecasts were improved by employing more
observations in the DA system. However, higher accuracy was provided by
reduction of surface assimilation cycle frequency, the best results were found
using a 3-hourly surface assimilation interval. Thereafter, upper-air DA impact
studies were carried out using different kinds of observations to improve the
analyses and forecasts. The impact of Czech and Hungarian Mode-S MRAR data
assimilations was dightly positive or neutral regarding the analyses and the
forecasts of surface parameters. The effect of AMDAR-humidity in AROME/HU
forecasts was also tested, and generally, neutral impact was obtained. However, it
can be noted that AMDAR-humidity improves the convective precipitation
forecast in the first hours and helps to extend dlightly the humidity related
observations in the assimilation system. In addition to the assimilation of
conventiona data, non-conventional AMV data has been tested in AROME/HU
DA system. Due to the outdated AMV blacklisting settings, an experiment was
performed by the activation of mid-tropospheric AMVs to allow more data into
the assimilation system. The upper-level innovation of this new experiment has
shown promising results for further studies.

This paper indicated, that applying new methods, as SEKF, more frequent
RUC, or increasing the number of new assimilated observations, like additional
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aircraft or AMV observations, are future perspectives and powerful tools to
improve the mesoscale analyses and forecasts. The AMDAR-humidity and the
Czech Mode-S MRAR data are already part of the AROME 3D-Var operational
system. The implementation of new, high resolution observations in the DA
system, such as radar observations or satellite data, are becoming highly
important, as the horizontal and vertical resolution of the meteorological model is
continuously growing. In addition, we have to pay attention to modeling of the
background error covariance matrix for the higher resolution model version,
which is based on AROME ensemble DA method.
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Abstract— Two historical Observing System Experiment (OSE) studies using the
ALADIN limited area model and its assimilation system are described. The first study,
using an OSE scenario that minimizes the impacts of observations through the latera
boundary conditions, demonstrated the importance of each assimilated terrestria
(radiosonde, aircraft, and wind profiler) observations on the analyses and short-range
forecasts of the ALADIN/HU model and proved evidence, that the role of conventional
observations cannot be even partly taken over by satellite measurements without
degradation of the forecast quality. The second study demonstrated that the assimilation of
radiosonde observations remains indispensable even with a progressively increasing
amount of aircraft measurements.
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1. Introduction

Numerical weather prediction (NWP) models have devel oped enormously during
the last three decades (Bauer et al., 2015). Initialization of these models requires
alot of observationsin time and (three dimensional) space. To be efficient, most
of the observations are synchronized in time and shared between the NWP centers
around the world through the Global Telecommunication System (GTS). The
World Meteorological Organisation (WMO) is coordinating the management of
the observation network on a global scale, while at European scale, EUMETNET
provides recommendations and support for the development and maintenance of
the terrestrial observing system.

NWP models require regular initialization of their initial condition taking
into account all available observations through the data assimilation (DA) process
(Daley, 1991; Kalnay, 2002). Therefore, well designed (spatially and temporally)
observations are very important for an accurate NWP. For this reason,
EUMETNET regularly initiates design studies that aim at evaluating the
performance of the existing observation networks and their possible evolution.
The Hungarian Meteorological Service (OMSZ) participated in some of these
studies in 2006 (first study: EUCOS' Space/Terrestrial Link Study) and 2009
(second study: Upper Air Network Redesign Study), which involved also NWP
centers in Europe such as the European Centre for Medium-range Weather
Forecasts (ECMWF), Deutscher Wetterdienst (DWD), Met Office, Danish
Meteorological Institute (DMI), and Norwegian Meteorological Institute (MET
Norway). The evaluation of the “usefulness’ of different observation networksis
usually done through the examination of the relative impact of these networks on
NWP analyses and forecasts. Usually, the following approaches are used for such
an evaluation: forecast sensitivity to observation impact (FSOI: e.g., Baker and
Daley, 2000; Gelaro et al., 2007; Cardinali, 2009; Soldatenko et al., 2018) and
Observing System Experiments (OSEs: e.g., Bouttier and Kelly, 2001; Amstrup,
2008; Benjamin et al., 2009; Radnoti et al., 2012; Bormann et al., 2019). In
practice, in OSE the studied observations are either progressively added (e.g.,
Randriamampianina et al., 2019) or taken out (datadenial) (e.g., Lawrenceet al.,
2019; Randriamampianina et al., 2021) from the DA system, and the impact of
such change isinvestigated.

This paper describes two OSEsiinitiated by the EUMETNET and realized at
OMSZ using the ALADIN? model (Bubnova et al., 1995; Horanyi et al., 1996;
Termonia et al., 2018) and its assimilation system (Fischer et al., 2005; Boloni,
2006; Randriamampianina, 2006b; Mile et al., 2015). While thefirst study aimed
at studying the benefits of terrestrial observing systems on top of the available
satellite observations, the second study investigated the relative impact of
different timely and spatially designed aircraft and radiosonde measurements.

1 EUMETNET Composite Observing System
2 Aire Limitée Adaptation dynamique Développement InterNational
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A limited area model (LAM) requires lateral boundary conditions (LBC) to
compute the forecasts for the region of interest, which are usually provided by a
global model, also called the driving model. With respect to LAM data
assimilation and OSEs, it is of particular importance what kind of observations
are assimilated in the driving model. Practically, there are few possible options:
1) more observation types are used in the driving model compared to those used
inLAM; 2) less observation types are used in the driving model compared to those
used in LAM; 3) similar observation types are used in both driving model and
LAM. Option 1) isvalid for most of the operational LAMsin Europe. In the first
study, 2) was used to minimize the impact of the observations assimilated in the
driving model in LAM, while 3) was used in the second study to get full impact
of the observations also through the LBCsin LAM. Although the relative impact
of observations through LBCs were well considered in the presented two studies
in this paper, their contribution in LAM was only evaluated in detail in recent
studies (Randriamampianina et al., 2021).

Section 2 describes the applied ALADIN/HU assimilation and forecast
systems, the experimental designs, and the adopted verification approach.
Section 3 presents the obtained results, while conclusions and some discussion
areincluded in Section 4.

2. Data and methods
2.1. ALADIN/HU assimilation and forecast systems

In this study the hydrostatic ALADIN model was used for Hungary
(ALADIN/HU; see Fig. 1 for the model domain) (code version CY 28T3 for the
first and CY 30 for the second study which were the operational model versionsin
2006 and 2009, respectively) with dlightly different configurations in the two
OSEs (Table 1). Three-dimensional variational data assimilation (3D-Var —
Fischer et al., 2005) was applied to provide the atmospheric analysis using
conventional (surface, radiosonde, aircraft, wind profiler) wind retrievals
(atmospheric motion vectors: AMV) (Randriamampianina, 2006a) and satellite
radiances (ATOVS. AMSU-A and AMSU-B) (Randriamampianina, 2005,
2006b) observations.
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Fig. 1. The domain of the ALADIN/HU model

Table 1. The applied model setupsin both studies

First study Second study
Horizontal resolution 12 km 8 km
Vertical resolution 37 vertical levels from the 49 vertical levelsfrom the
surface up to 5 hPa surface up to 5 hPa
Code version CY28T3 CY30
Initia times and forecasts lengths 00 UTC (48h) 00 UTC (54h)
12 UTC (48h) 06 UTC (48h)

Although the use of observations was mainly determined by the scenarios of
the OSE (see the next sections on the design of the experiment), here we describe
some details on the use of observations, which might be important when
interpreting the obtained results later on. Among the surface (SYNOP)
observations, only geopotential data was used. From radiosondes (TEMP),
geopotential, temperature, wind, and humidity data were assimilated. The
AMDAR (Aircraft Meteorological DataRelay) aircraft datawere assimilated with
25 km horizontal thinning within a +/- 1 hour observation window. The default
thinning procedure of the aircraft data in ALADIN is done separately for each
flight, which impliesarisk of databeing close to each other in space but measured
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at different times. To avoid this problem, an additional filtering procedure was
applied prior to aircraft data thinning. Wind profiler observations were used
between 700 hPa and 400 hPa from the closest profile to the analysis time. This
definitely results in a smal amount of data in the experiments. The AMV
(GEOWIND) datawere used above 350 hPa and below 800 hPa over seafrom the
closest observation to the analysis time with a 25km horizontal thinning
(Randriamampianina, 2006a). Full grid ATOVS (AMSU-A and AMSU-B/MHS)
data were assimilated within a +/- 3 hour observation window using 80 km
horizontal thinning. In the experiments AMSU-A data from NOAA-15 and
NOAA-16, and AMSU-B data from NOAA-16 and NOAA-17 were used
(Randriamampianina, 2005 and 2006b). The data usage in the OSE experiments
was carefully assessed through a web-based monitoring system.

For the first study, the surface fields were initialized by an interpolation of
the corresponding ECMWEF analysis to the ALADIN grid, while for the second
study, an optimum interpolation (Ol) scheme was used for the initialization of the
surface fields. Concerning the assimilation of satellite radiances, the RTTOV-7
radiative transfer code was used to simulate the radiances from the model fields
(Saunders et al., 2002). The background error covariance matrix is computed
using the NMC method (Parrish and Derber, 1992) in the first study and by the
downscaled ensemble method (Berre et al., 2006; Boloni and Horvath, 2010) in
the second study. A digital filter initialization is applied prior to the model
integration. A six-hourly assimilation cycle generating analyses at 00, 06, 12, and
18 UTC was adopted. Three-hourly lateral boundary coupling was applied using
the ECMWF analyses and short-range forecasts depending on the network time.
At 00 and 12 UTC, the ECMWF analyses were used as the first boundary file,
while at 06 and 18 UTC, the short-range forecasts (6-hour forecasts) of the
ECMWF were used as the first coupling file. Longer forecasts were performed
twice aday (see Table 1).

2.2. Design of the experiments
2.2.1. First study

The objective of the EUCOS Space/Terrestrial Link Study was to explore the
relative benefit of various components of the terrestrial observing system on top
of satellite observations. The chosen strategy for the study was to run a series of
data denial experiments using different sets of observations within both global
and LAM assimilation and forecasting systems. The NWP models taking part in
the experiments were the global ECMWF, the global and the LAM version of the
Unified Model (UK MetOffice), the Danish (Amstrup, 2008) and the Norwegian
(Thyness and Schyberg, 2007) versions of the HIRLAM?® model, and the
ALADIN/HU model. Due to the different location of the LAM domains, the OSE

8 HIRLAM: High Resolution Limited Area Model
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scenarios differed sightly between the participants with LAM. For instance, in
the Hungarian experiments the E-ASAP (EUMETNET Automated Shipboard
Aerological Programme) observations were not used, because these observations
cover mainly the northern part of the Atlantic ocean. Lateral boundary conditions
for the ALADIN- and HIRLAM-model based experiments were taken from the
ECMWF baseline (see bel ow the description of baseline) experiment. The Unified
LAM Model was coupled with its global version.

The experiments were conducted for both winter and summer periods. The
winter period was from December 4, 2004 till January 20, 2005, while the summer
period started on July 15 and lasted until September 5, 2005. The first 10 days of
both periodswere used for awarm up of the model and were not used for verification.
The definitions and acronyms of the ALADIN/HU experiments are as follows:

Winter (EU)/Summer (ES) experiments:

EUO01/ESO1 — baseline (GSN* surface and GUAN® radiosonde + AMV +
ATOVS radiances)

EUO2/ESO2 — baseline + aircraft,

EUO3/ESO3 — baseline + radiosonde wind profiles,

EUO4/ESO4 — baseline + radiosonde wind and temperature profiles,
EUO5/ESO5 — baseline + wind-profilers,

EUO06/ESO6 — baseline + radiosonde wind and temperature + aircraft,
EUO7/ESO7 — baseline + radiosonde wind, temperature and humidity,
EUO8/ESO8 — full observation (radiosonde + wind-profiler + aircraft).

2.2.2. Second study

The main objective of the Upper Air Network Redesign Study was to provide
input for the definition of a European-wide network of ground-based upper-air
observing systems with special emphasis on regiona modeling. This study
concentrated on the possible refinement of the upper-air observing network
(radiosonde and aircraft) with respect to their optimal spatial and temporal
distribution. For that end, six different observation scenarios were specified
starting from the full operational data usage (control scenario) and ending with a
baseline scenario, which was characterized by radical decrease of the number of
radiosonde and aircraft profiles. The intermediate scenarios were focusing on the
different thinning distances for the radiosonde and aircraft data with step-by-step
degradation of their amounts. The scenarios were defined as follows:

Sc2 — Control: Full operational observation coverage.

GSN: GCOS (Global Climate Observing System) Surface Network
5  GUAN: GCOS Upper-Air Network
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Sc3a: The radiosonde network is slightly reduced with a 100 km thinning
distance, all aircraft data and the full remaining part of the observation
networks.

Sc3b: Like Sc3a, but no thinning is performed for the 00 UTC radiosonde
profiles.

Sc4: Like Sc3a but 250 km thinning distance for radiosondes and aircraft
data.

Scb: Like Sc4, but 500 km thinning distance.

Scl-Baseline: GUAN radiosonde network, flight level aircraft data, aircraft
profiles of less than 3 hourly visited airports and full remaining part of
the observation network.

The Observing System Experiments based on the above scenarios were
performed by a global NWP center (ECMWF) and some National Meteorological
Services (NMS) running LAMs. It was decided that the information on aircraft
observations (which were created by a specia blacklisting and thinning
algorithms and provided by the EUCOS team) for each scenario was provided
directly by ECMWEF in order to ensure, that the same sets of observations are used
in both global and limited area experiments. Concerning the radiosonde data, the
same blacklisting decisions were applied at all centers. Other observation types
were used as locally applied operationally. The experiments were carried out for
a winter period between December 15, 2006 and January 31, 2007 and for a
summer period between June 1st and July 15, 2007. The difference between the
radiosonde and aircraft observation usage for all scenarios can be seenin Fig. 2,
where (for the winter period) the amount of active data is displayed for each
scenario. It can be seen that the control scenario is using more than double (rather
2.5) times more amount of radiosonde and roughly double aircraft data with
respect to the baseline scenario (these are the two extreme scenarios), and the
intermediate scenarios are situated between these two extremes as expected. In
terms of aircraft data usage the control (Sc2), Sc3a, and Sc3b scenarios are
equivalent. Therefore, it isexpected that the best forecasting performanceisgoing
to be for Sc2 (control), which is followed by Sc3b, Sc3a, Sc4, Sc5, and Scl
(baseline). It isinteresting to notice the Christmas and New Y ear radical decrease
in the amount of data especially for the aircraft observations.
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Fig. 2. Number of daily observations (temperature, wind, geopotential, and humidity for
radiosondes, and temperature and wind for aircrafts) assimilated into the ALADIN/HU
model using the six winter scenarios for radiosondes (left) and for aircraft (right)
observations.

In order to be in agreement with the “real-life” situation, the LAM models
were coupled with the corresponding global scenario runs (in contrary to the
solution proposed for the previous space-terrestrial study — first study —, where
the baseline scenario was used for all the runsin order to not mix the impacts of
theinitial and lateral boundary conditions). The LAM runswere performed by the
HIRLAM group and the Hungarian Meteorological Service.

2.3. The applied verification method

In order to allow a meaningful comparison of the results from al participants, a
common evaluation procedure was agreed, as follows. Computation of objective
scores composed by bias and root-mean-square error (RMSE) of the simulated
analyses and forecasts against observations (surface and radiosonde observations,
using the so-called EWGLAM station list (Hall, 1987)) was mandatory for both
studies. For the first study, we also performed a verification against the ECMWF
analyses. Geer (2016) underlines the importance of significance of the RMSE
differences. Significancetests of the objective verification scoreswere performed.
The significance tests were computed on the normalized (by mean scores) mean
difference in analyses and forecasts quality using the Student’ st-test. The number
of the analyzed and forecast parameters with the associated pressure levels was
also agreed in advance. Further, an abjective evaluation of two, a summer and a
winter, case studies was performed focusing on interesting weather situations.
Although, for the sake of the length of thisarticle, the results of these case studies
are not discussed.
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3. Results
3.1. First study

The OSE technique applied in the first study was based on adding the studied
observations in DA on top of the basdline system. For example, the impact of the
aircraft observations was checked by comparing the verification scores for
EUO02/ESO2 and EUOL/ESOL. The relative impact of the aircraft temperature and
wind data was shown by plotting the verification scores of the above experiments
together with the results of the run using the full observation set (EUO8/ESOS).
Similarly, the impact of radiosonde wind data was checked by comparing the
verification scores of EUO3/ESO3 with EUOL/ESO1, and so on for the impact of the
radiosonde temperature, humidity, and the combined impact of radiosonde and
aircraft data, aswell asfor the impact of the wind profilers. Asan example, in Fig. 3
we show the impact of the radiosonde temperature on analyses and forecasts of
temperature fields.

Fig. 3. The RMSE differences of temperature at 850 hPa between the experiment with
radiosonde temperature and wind profiles (ES04) and the experiment with radiosonde wind
profiles (ES03). The significance test is based on daily scores of temperature fieldsfor both
00 and 12 UTC runs for the summer period July 25-September 2,2005). The graphs show
the comparison against observations (left) and against the ECMWF analyses (right).
Negative values mean reduction of the model errors when the radiosonde temperature was
added in the DA, hence they show positive impact.

Table 2 shows the overall observed (from both against observations and the
ECMWEF analyses) verification results, which can be summarized as follows.
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Objective verification against ECMWF analyses mostly showed a clear
positive impact of the terrestrial observations on the analysis and forecasts of
ALADIN/HU up to 2 days. Verification against observations showed that the
impact isup to 24 hours. Case studiesindicated clear improvement in the forecasts
when adding the different components of the terrestrial observations in the
assimilation system (not shown).

Table 2. Overal impact of the terrestrial observations during winter (in brackets) and
summer (without brackets). + means significant positive impact.

Forecast ranges with impact

O;S;f;lnng Parameters Nviu;gilr/';e L day 1day 1.5day 2 days
Wind +) +
Radiosonde  Temperature (+) +
Humidity (+) +
Aircraft ‘ er\:mv;i)ggat%r o *) +
Wind-profiler wind +) +

A more pronounced and long-lasting positive impact of the aircraft
observations was found during summer compared to the winter period. Positive
impact of the aircraft data on the forecast of humidity fields was observed during
summer, while negative impact was found for the winter period, athough it was
significant only for afew hours (not shown). Positive impact of the aircraft data on
theforecast of precipitation was observed for the summer period, while neutral (from
00 UTC) and negative (from 12 UTC) impacts were found for the winter period (not
shown).

A clear positive impact of the radiosonde wind observation on the analysis
and short-range forecasts was observed. A positive impact of the radiosonde
temperature up to 24 and 48 hours was concluded during the winter and summer
periods, respectively. Clear positive impact of the radiosonde temperature
forecasts of the mean sea level pressure up to 24 hours was detected for summer,
while neutral impact was found during the winter period (not shown). Neutral
impact of the radiosonde humidity on the mean sea level pressure was observed
during the summer period, while clear positive impact was seen during the winter
period. Better impact of the radiosonde temperature on the geopotential wasfound
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in the summer study. Large positive impact of the radiosonde humidity was
observed for all forecast ranges of precipitation (see Fig. 4).

Fig. 4. RMSEs of 6-hourly cumulated precipitation at different forecast ranges (idélépcsé
— forecast ranges) for 00 UTC runs. Red line: forecasts initialized using radiosonde
temperature and wind data (ES04_00), yellow line: forecasts initialized using radiosonde
temperature, wind, and humidity data (ESO7_00), green line: forecasts initialized with all
available data (ES08_00).

The impact of the wind profilers on the analysis and forecasts is neutral for
most of the meteorological parameters, but one can find examples with slightly
positive impact as well (maximum up to 12 hours).

Our results showed that there is no problem of redundancy when using the
aircraft observations on top of the radiosondes. Comparing the baseline (ES01),
baseline and aircraft (ES02), and baseline and radiosonde wind and temperature
(ESO4) (summer study), we found that the impact of the aircraft (wind and
temperature) observations was a bit larger than what we found during the winter
study (half of the impact of radiosonde wind and temperature data). For the
summer period, better scores were observed when comparing the impact of the
aircraft data on top of the radiosonde wind and temperature data (ES04 vs ES06),
while small deterioration was observed in the winter study.
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3.2. Second study

Similarly to thefirst study, the impact on the ALADIN/HU analysis and forecasts
was checked by comparing the verification scores of the different scenarios.
Table 3 summarizes the observed verification results focusing on the impact on
the analyses and forecasts in the lower troposphere and focusing only on the
model run from 00 UTC.

The control (Sc2) scenario significantly outperforms the baseline (Scl)
scenario during the first 24 hours of forecasts with the exception that the impact
of temperature lasts up to one and half days in the winter case (Table 3, first
comparisons).

Concerning scenarios 3 (3aand 3b), comparing the verification scores of the
control with that of Sc3a showed clear importance of high resolution radiosonde
network in LAM. Comparing the verification scores of Sc3aand Sc3b showed the
importance of having a full network of radiosonde observations at 00 UTC. The
obtained results showed also that Sc3b is better than the control (not shown in
Table 3).

Table 3. Overall impact of observations with the different scenarios during winter (in
brackets) and summer (without brackets). - means significant degradation and positive

impact.
Observing system Parameter Forecast range with impact
Neutral/few % day 1 day 1.5day 2 days
hours
Wind -)-
Control
(Se2 - Sc) Temperature - )
Humidity () -
Radiosonde 100 km Wind -
thinning Temperature - )
(Sc2-5c38)  Humidity 6
Full radiosonde ~ Wind () -
resolution at 00 UTC Temperature )
(Sc3b - Sc3a) Humidity ¢)-
Radiosondeand ~ Wind ) -
aircraft at 250 km - Temperature - )
resolution o
(Sc2 - Scd) Humidity )
Radiosondeand  Wind - )
aircraft at 500km  Temperature ) -
resolution o
(Sc2 - Sc5) Humidity )
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Further reducing the resol ution of both radiosonde and aircraft networks (Sc4
and Sc5) showed clear degradation of the accuracy of analyses and forecasts of
the ALADIN/HU model. While for the case of Sc4 (both radiosonde and aircraft
networks at 250 km resol ution), the degradation in wind and temperature forecast
quality lasted up to 12 hours, for Sc5 (both radiosonde and aircraft network at 500
km resolution), the degradation lasted up one and half day for both temperature
and humidity (see Fig. 5). Further, it was clearly shown that degradation of these
observing networks significantly impacts the quality of the humidity forecasts of
the ALADIN/HU model.

Normallzed RMSE difference SCE2-SCES Normallzed RMSE difference SCE2-SCES
Period: 20070608, 20070715 Run:00 UTC Period: 200706808, 20070715 Run:00 UTC
Varlable: T 850 Varlable: RHU 700
90.0% two sided confidence interval 90.0% two sided confidence interval

T

o
o
=]

&

—0.10

MNOrMAIZea KNaE ant [a)
NCrmalZea Kvas ant [7a)

L

T T T T T T T T T T
a [ 12 18 24 30 el 42 48 a [ 12 18 24 30 a8 42 48
Forecast ranges Forecast ranges

Fig. 5. The RM SE differences of temperature at 850 hPa (left) and relative humidity (right)
between the control experiment (Sc2) and the one where radiosonde and aircraft data have
been reduced with a 500 km thinning distance (Sc5). The graphs show the comparison
against observations for the summer period of June 8 — July 15, 2007. Note that the full
radiosonde network is mainly available at 00 and 12 UTC, and we have relatively less
observationsat 06 and 18 UTC. So, therelatively large error bars at 06, 18, 30, and 42 hour
forecast ranges are due to use of less verifying observations and not due to the observation
impact. Negative values mean reduction of the forecast errors due to the usage of
radiosondes and aircraft data with a higher spatial density.

4. Summary and discussions

We presented two OSE studies performed several years ago in this paper. While
thefirst oneinvestigated the importance of the full terrestrial (radiosonde, aircraft
and wind profiler) European networks, the second study evaluated the efficiency
of the radiosonde and aircraft networks.
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In the first study, the impact of the studied observations lasted longer during
summer than during winter. All tested observations have clear positive impact on
the ALADIN/HU analyses and forecasts. This study showed for the first time that
the implemented data assimilation system isworking properly, which means that,
with the adopted experiment design - minimizing the impact coming through the
lateral boundary conditions by using the baseline experiment from the coupling
globa model -, al the implemented observations showed clear positive impacts
on the LAM model.

The second study showed that high resolution observing networks (both
radiosonde and aircraft) are important for improving the LAM analyses and
forecasts. The positive impacts of the studied observations were clearly shown
thanks to the design of the experiments. In the second study, in each experiment
the LAM was coupled with its global counterpart. Compared to the impact found
in the first study, which was somehow maximized, we got the exact relative
impacts of the studied observationsthrough LAM DA. Randriamampianina et al.
(2021) used the similar experiment design, and further computed as well the
impacts of different observing networks through the LBCs on the LAM analyses
and forecasts. They found that the total impacts of observations on LAM upper-
air forecasts is dominated by the impacts through LBCs. This explains the
“relatively weakened” (e.g., shorter lasting) impact shown in the second study
compared to what is shown in the first one.

These studies demonstrated that the conventional (terrestrial) observations
are till avery important component of the observing network. Despite the large
amount of data from new observation techniques (especialy satellites), the
terrestrial network is indispensable for maintaining forecast quality even on a
regional scale, and its redundancy is out of question. Additionally, the increasing
number of aircraft data available does not mean that the radiosonde information
would become redundant, and therefore, it is critical to keep (or even enhance)
the present network of radiosondes.

This paper describes results of studies that were done 10-15 years ago
accounting older model versions and relatively poorer observing networks. This
is true for the aircraft observations where now we have on top of the AMDAR
(Aircraft Meteorological Data Relay) network, the Mode-Selective (Mode-S)
Enhanced Surveillance (EHS) and Meteorological Routine Air Report (MRAR)
observations. Further, although with very limited numbers, over the Hungarian
modeling area of interest, some aircrafts are equipped with humidity sensors.
When available, the AMDAR humidity observations are assimilated in the
operational convection-permitting AROME (Application of Research to
Operations at Mesoscale) model at OMSZ (Téth et al., 2021). Theimplementation
of the Mode-S (both EHS and MRAR) data is ongoing in AROME/HU (Fischer
et al.,, 2017). We expect different impacts of the individual and combined
terrestrial observing networks in the current AROME operational model.
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Abstract— The paper presented is dedicated to the evaluation of the influence of various
improvements to the numerical weather prediction (NWP) systems exploited at the Slovak
Hydrometeorological Institute (SHMU). The impact was illustrated in a case study with
multicell thunderstorms and the results were confronted with the reference analyses from
the INCA nowcasting system, regional radar reflectivity data, and METEOSAT satellite
imagery.

The convective cells evol ution was diagnosed in non-hydrostatic dynamics experiments
to study weak mesoscale vortices and updrafts. The growth of ssmulated clouds and
evolution of the temperature at their top were compared with the brightness temperature
anayzed from satellite imagery. The results obtained indicated the potential for modeling
and diagnostics of small-scale structures within the convective cloudiness, which could be
related to severe weather.

Furthermore, the non-hydrostatic dynamics experiments related to the stability and
performance improvement of the time scheme led to the formulation of a new approach to
linear operator definition for semi-implicit scheme (in text referred as NHHY). We
demonstrate that the execution efficiency hasimproved by more than 20%.
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The exploitation of several high resolution measurement types in data assimilation
contributed to more precise position of predicted patterns and precipitation representation
in the case study. The non-hydrostatic dynamics provided more detailed structures. On the
other hand, the potential of asingle deterministic forecast of prefrontal heavy precipitation
was not as high as provided by the ensemble system. The prediction of aregional ensemble
system A-LAEF (ALARO Limited Area Ensemble Forecast) enhanced the localization of
precipitation patterns. Though, this was rather due to the simulation of uncertainty in the
initial conditions and also because of the stochastic perturbation of physicstendencies. The
various physical parameterization setups of A-LAEF members did not exhibit a systematic
effect on precipitation forecast in the evaluated case. Moreover, the ensemble system
alowed an estimation of uncertainty in arapidly developing severe weather case, which
was high even at very short range.

Key-words: numerical weather prediction, multicellular convection, convection-permitting
modeling, GNSS ZTD (Globa Navigation Satellite System — Zenith Total Delay) data
assimilation, radial Doppler wind assimilation, probabilistic forecasting, mesovortex, cloud
top temperature

1. Introduction

The history of NWP (numerical weather prediction) activities at SHMU is
manifold, concerning research and development in the field of data assimilation,
dynamics, physical parameterization, predictability as well as diagnostics
(Derkova, 2005). These were mostly focused on forecasting mesoscale events,
such as the downslope windstorm in High Tatras on November 19, 2004 (Smon
et al., 2006). Arguably the most challenging task in mesoscale forecasting covers
non-frontal thunderstorms, often accompanied by flash floods, hail, or other
severe phenomena. A catastrophic flash flood in the year 1998 in the Mala Svinka
basin (Svoboda and Pekarova, 1998) accelerated the endeavour to improve early
diagnostics and prediction of such events. This resulted for example in local
implementation and further devel opment of the INCA nowcasting system (Haiden
et al.,, 2011) in the frame of the FLOODMED and INCA-CE (Integrated
Nowcasting Comprehensive Analysis — Central Europe) projects (Wang et al.,
2017D).

Nevertheless, the possibility of nowcasting of local storms, which have
basically multicellular character and undergo rapid development is very limited,
when using only extrapolation methods. Early versions of the deterministic model
at SHMU (called ALADIN/SHMU) were also not suitable for very short range
forecasting in such cases, except for diagnostics of the convective environment.
New opportunities were open after upgrading the physical parameterization of
canonical model configuration ALARO (Termonia et al., 2018) and after further
improvements in the non-hydrostatic dynamics, which involved the
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implementation of the iterative centered implicit (ICl) scheme (Bénard et al.,
2010). In ALARQO, it was the so-called 3MT package, including mesoscale-
oriented parameterization of convection (Gerard, 2009) and microphysics (after
Lopez, 2002), which enabled more realistic simulation of local convective events.

Data assimilation procedures that provide redlistic initial state for NWP
model integration are equally important to obtain the correct model forecast. At
SHMU, firstly the spectral blending by digital filter method was applied to
improve the large scal e representation of the upper air fields (Derkova and Bellus,
2007). Advanced variational data assimilation schemes are not operationally used
at SHMU, mostly due to lack of computer resources. Recently there are several
data assimilation activities based on 3D-Var approach ongoing in parallel:
assimilation of the Mode-S data (CatloSova and Derkova, 2020), assimilation of
zenith total delay observations (Imrisek et al., 2020), assimilation of Doppler
weather radar measurements (CatloSova, 2020) seemed to be promising in
correcting the very short range forecasts at mesoscale, but these methods are still
under devel opment.

When forecasting severe mesoscale events, one has to deal with naturally
large uncertainty already at nowcasting ranges or at very short lead times, which
can be estimated with EPS (ensemble prediction system) methods. The SHMU
EPS activities have been initiated in 2006 within the frame of the ALADIN-LAEF
development, operational at the ECMWF HPCF (High-Performance Computing
Facility) since 2011 (Wang et al., 2011). Currently, ALADIN-LAEF is being
replaced by a more sophisticated system based on the ALARO model with
substantially higher spatial and vertical resolution called A-LAEF (Bellus, 2020a).
Up to now, severa case studies on severe weather were performed showing the
potential of this system to identify even local flash floods (e.g., the flood on
August 17, 2019 in Turkey) or windstorms (Bellus, 2020b). The A-LAEF system
became operational at ECMWF HPCF as a Time Critical 2 application in July
2020, and its main objective isto provide reliable probabilistic forecasts at meso-
synoptic scales for the national weather services of 8 RC LACE partners
(Slovenia, Slovakia, Czech Republic, Croatia, Romania, Poland, Austria,
Hungary) and Turkey.

The proper simulation of the initial conditions uncertainty as well as of the
model uncertainty, together with the high-resolution physics well adapted to the
local conditions, are crucia ingredients for the forecasting of convective events
with generaly low predictability. For this study aconvective situation was
chosen, which israther typical in summer over Central Europe, and representsthe
above mentioned issues with forecasting non-organized, rapidly developing
thunderstorms. Despite weak deep-layer shear and weak synoptic forcing, the
thunderstorms on June 7, 2020 caused severe weather over Slovakia and the
neighboring countries. It was mainly in the form of heavy precipitation or hail
(ESWD, 2020) throughout the afternoon and evening hours. The operational
ALADIN/SHMU forecasts used at that time predicted convective precipitation
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rather in association with a cold front arriving toward the end of the day. SHMU
forecasters issued preliminary warnings on prefrontal thunderstorms already on
June 5 and 6 but with the lowest level of severity. These were updated after the
development of storms had begun, and the second level of warning (on intense
thunderstorms with hail and high precipitation) was issued mainly for districts
in the western part of Slovakia. Concerning the eastern part of Slovakia,
likelihood of severe storms during night hours was indicated by the ESTOFEX
(ESTOFEX, 2020). For these reasons it was examined, whether assimilation of
new data and higher-resolution non-hydrostatic models are capable of
improving the precipitation forecasts, and what the limits of deterministic
forecasting are in these types of situations. The experiments were compared
with pre-operational forecasts of the A-LAEF system and its respective
members. The EPS outputs were also used to evaluate the predictability of the
event and the possible impact of various physical parameterizations. Apart
from precipitation, distinguishing between different types of convection (e.g.,
multicell or supercell-type) is an important ingredient for severe weather
forecasting. Thus, the ability to forecast small-scale structures (e.g.,
mesocyclones) with the convection-permitting configuration of the ALARO
model was tested and compared with available radar and satellite observations.

Similar activities are ongoing at other national meteorological services over
Europe where convection-permitting NWP deterministic models (AROME-
France, Seity et al., 2011; Brousseau et al., 2016; HARMONIE-AROME,
Bengtsson et al., 2017; ALADIN at CHMI, Brozkova et al., 2019; COSMO,
Baldauf et al., 2011) as well as ensemble prediction systems (Arome-EPS,
Bouttier et al., 2012; C-LAEF, Wastl et al., 2021; OMSZ AROME-EPS, Szintai
et al., 2015; AROME-MetCoOp, Mller et al., 2017) are applied to improve
forecast skillsfor high impact westher.

The presented study comprises description of used ALARO model versions
in Section 2 and gives an overview of the experimentsin Section 3. The case study
description and results of respective experiments are shown in Section 4, whereas
discussion and layout of further development in mesoscal e forecasting follow in
Section 5.

2. Methodology and description of used LAM NWP systems
2.1. LAM NWP systems used in the study
Four different versions of the ALARO NWP system have been used for

experiments and diagnostics described in this paper. The basic setup of the
systemsis summarized in Table 1.
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Table 1. Setup of four referenced ALARO versions.

label ALADIN/SHMU  A-LAEF ALADIN/CHMI ALARO 2
status operational operational operational run in testmode at
(common RC (at CHMI) SHMU
LACE)
horizontal 4.5km 4.8km 2.3km 2.0km
resolution
number of points 625 x 576 1250 x 750 1080 x 864 512 x 384
domain size 2813 x 2592 km 6000 x 3600 km 2511 x 2009 km 1024 x 768 km
number of 63 60 87 87
vertical levels
coupling model ARPEGE, 3 h 16+1 members of ARPEGE, 3 h ARPEGE, 1 h
coupling ECMWFEPS, 6h  coupling coupling
frequency coupling frequency  frequency frequency
forecast ranges 78/72/72/60 h 72/-I72/- h 72/72/72/54 h 78/72/72/60 h
Initial times 00/06/12/18 UTC 00/12 UTC 00/06/12/18 UTC ~ 00/06/12/18 UTC
upper air data spectral blending  spectral blending BLENDVAR none (dynamical
assimilation by DF by DF for 16+1 downscaling)
members
surface data CANARI optimal  Ensemble data CANARI optimal  none (LBC
assimilation interpolation assimilation based  interpolation downscaling)
on CANARI Ol
initialization none none Incremental digital digital filter
filter in short cut-
off production
anaysis
model physics ALARO-1vB ALARO-1 multi-  ALARO-1vB, Thesameas
physics + surface adapted for ALADIN/CHMI
stochastic physics  convection-
(SPPT) permitting scales
model dynamics  Hydrostatic The same as Non-hydrostatic The same as
formulation, ALADIN/SHMU formulation, ALADIN/CHMI
spectral, semi- spectral, semi-
implicit, 2 time implicit 2 time
level semi- level iterative
lagrangian centered implicit
scheme scheme
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2.1.1. ALADIN/SHMU model description

The main operational model used at SHMU is the ALARO configuration of the
ALADIN NWP system (Termonia et al., 2018) with 4.5 km horizontal resolution
and 63 vertical levels. This version is hydrostatic with spectral, semi-implicit
(Smmons and Burridge, 1981), 2-time-level semi-lagrangian scheme (Hortal,
2002).

The ALARO-1vB upper air physics setting (Brozkova et al., 2019) and |SBA
surface scheme (Noilhan and Planton, 1989) with CY 43t2_bf11 code version are
largely applied. The parameterization of turbulence (sometimes modified in
ALARO experiments described later) includes the emulated TKE-based scheme
(Durén et al., 2014; 2018) denoted as model 11 (MD2) and the Geleyn-Cedilnik
formulation of the mixing length (Cedilnik et al., 2005; Geleyn et al., 2006). The
global model ARPEGE provides lateral boundary condition (LBC) data 4
times/day with 3-hourly frequency. For initial conditions the operational
ALADIN/SHMU system uses spectral blending by digital filter algorithm for
upper air atmospheric fields (Derkova and Bellu§, 2007). For surface data
assimilation, the optimal interpolation scheme denoted CANARI (Giard and
Bazile, 2000) is applied. See Derkova et al. (2017) for more details on the current
operational version of ALADIN/SHMU.

2.1.2. A-LAEF system description

The former utilization of ensembles at SHMU has been restricted mostly to the
globa systems (ECMWF ENS, GEFS), which were used mainly for the medium-
range forecasts. Recently, anew short-range ensembl e weather forecasting system
A-LAEF (ALARO Limited Area Ensemble Forecasting), available to our
forecasters since July 2020 (Bellus, 2020a; Bellus et al., 2019), can offer, among
the other enhancements, a 4-times higher spatial resolution than its predecessor.
Technically, it isasequel to theformer ALADIN-LAEF system developed within
the RC LACE cooperation (Regional Cooperation for numerical weather
modeling on Limited Areain Central Europe, Wang et al., 2017a). The ALADIN-
LAEF system had been operational at ECMWF since 2011 (Wang et al., 2011)
until recently, when it was replaced by the A-LAEF system. Moreover, the new
A-LAEF system has increased horizontal and vertical resolution (4.8 km/60 L),
and involves new perturbation techniques. The key components of the A-LAEF
ensemble system are the followings:

0 Multi-physics based on ALARO-1 parameterizations, which can seamlessly
operate on the horizontal scalesfrom 2 to 10 km (Termonia et al., 2018) and
is capable of simulating the uncertainty on meso-synoptic scales. There are
4 different groups of settings for turbulence, microphysics, deep and shallow
convection, and radiation parameterizations, hereafter referred to as MP
clusters (Bellus, 2019);
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0 Ensemble of surface data assimilations ESDA (BellusS et al., 2016) with the
upper-air spectral blending by digital filter initialization (Derkova and
Bellusg, 2007);

0 The stochastic perturbation of physics tendencies for the surface prognostic
fields (Wang et al., 2019).

Concerning turbulence, the emulated QNSE parameterization of turbulent
fluxes (Sukoriansky et al., 2005) and the Geleyn-Cedilnik mixing length limited
in stable regimes (Durén, 2014) are applied in MP clusters 2 and 3, whereas
members of the clusters 1 and 4 run with the same turbulence scheme as
ALADIN/SHMU. The integration domain of A-LAEF system covers large area
including Europe, the whole Mediterranean Sea, and the part of Western Asia
(Fig. 1). The ensemble comprises 16 perturbed members and 1 control run
coupled to the ECMWEF ENS, and the probabilistic products are available twice a
day (based on the 00 and 12 UTC runs) for the next 3 days.

Fig. 1. Domains of the model configurations used in this study: A-LAEF (with model
topography), and domain borders of ALADIN/SHMU, ALADIN/CHMI, ALARO 2 km,
and of the INCA nowcasting system.
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2.1.3. ALADIN/CHMI model description

The ALARO configuration run at CHMI (Brozkova et al., 2019, 2021) at 2.3 km
horizontal resolution uses non-hydrostatic dynamics, spectral, semi-implicit 2-
time-level iterative centered implicit scheme (Bénard et al., 2010). The
BLENDVAR method (Bucanek et al., 2015) is applied for the analysis of the
initial atmospheric fields. Incremental digital filter (Fischer and Auger, 2011) is
applied for short cut-off production analysis.

The physical parameterization of thisversion is similar to ALADIN/SHMU
but adapted for higher resolution (because deep convection and its effects are
partialy resolved, whichistreated within the M T scheme). ThisALARO version
was used only for experiments with radar data assimilation (see Section 3), which
isnot availablein ALADIN/SHMU vyet.

2.1.4. ALARO 2 setup description

An ALARO version similar to ALADIN/CHMI is used at SHMU at horizontal
resolution 2 km in dynamical adaptation mode without assimilation cycling and on
a smaler domain (due to computational costs). The model uses digita filter
initialization (Lynch et al., 1997). Therole of the digita filter isto filter out the noise
introduced by the interpolation of LBCs into target resolution and to ensure higher
numerical stability at the beginning of the run. Although running daily, the model is
not considered to be fully operational, and its purposeisin testing and tuning of the
physical parameterization and gaining experience with the convection-permitting
mode (important for the future upgrade of the current ALADIN/SHMU to higher
resolution). Several experiments in this study were based on the ALARO 2
experimental setup with certain modifications (described later).

2.2. Postprocessing and diagnostic methods
2.2.1. Parameters of convective environment

Processing of the ALADIN/SHMU outputs involved calculation of convective
parameters and indices averaged for longer (3h) timescales, including surface-
based convective available potential energy (SBCAPE), low-level divergence
(average of the 980, 950, 925, 900, 875, 850 hPa divergence), relative humidity
(average of the 2, 300, 500, 750, 1000, 1500, 2000, 3000 m AGL humidity) and
0-6 km wind shear. Averaging was used to characterize the prevailing conditions
and environment of deep convection focusing on instability, humidity and
saturation of theair, lift, shear during periods for which accumulated precipitation
was calculated. These parameters were based on the forecasts of the operational
ALADIN/SHMU model.
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2.2.2. Cloud top height and temper atur e assessment

Cloud top height and cloud top temperature (CTT) were estimated from ALARO
2 outputs (simulated brightness temperature is not available as a diagnostic
parameter yet). Cloud tops were identified upon thresholds of cloud ice (CLI) or
cloud liquid water (CLW) mixing ratios forecast by the models. Further,
extinction coefficients for ice were assessed from CLI (Stoelinga and Warner,
1999). It is often considered that CLW exceeds 0.01 gm™ in water clouds
(Kokhanovsky, 2004), and the extinction coefficient for ice in thick cirrus clouds
isabout 1.0 kmr? (Platt, 1997). However, in the presented case, the identification
thresholds had to be higher (0.02 gm?® for CLW and 2.5 km* for the CLI
extinction coefficient) to better distinguish the top of a precipitating convective
cloud from a cirrus cloud aloft. The algorithm aso evaluated the depth of the
cloudiness inferred from CLW and CLI profiles and the maxima of these
parameters.

2.3. Observation data used for experiments evaluation

For evaluation of precipitation forecasts, analyses of the INCA nowcasting system
(Méri et al., 2018, 2021) were used, which process inputs from both AWS and
radar observations. At SHMU, hourly analyses of precipitation are generated on
a 1x1 km resolution domain. Radar reflectivity data were from the composite of
Slovak, Hungarian, and Czech radars operated by SHMU, OMSZ, and CHMU
national meteorological services (Jurasek et al., 2017; Spos et al., 2021; Novak
et al., 2019). These images have 660 m horizontal resolution and leaflet.js API
was used for the visualisation with Wikimedia maps in the background (Leaflet,
2021; Wikimedia, 2021). Column maximum radar reflectivity data (Cmax) were
retrieved with projections of the vertical profiles of the maximum reflectivity to
four sides of the image (from the central axis toward the respective side). The
constant altitude plan position indicator (CAPPI) horizontal cross-sections at
2 and 3 km height were generated for determination of the type and structure of
convective cells. Doppler radar velocity measurements were analyzed from plan
position indicator (PPI) data at 0.5, 1.0, 1.5, and 2.0 degree of antenna elevations
measured by respective SHMU radars with 250 m gatewidth. The Nyquist
velocity interval for these PPI datawas +40 m/s. Cloud top brightnesstemperature
(CTB) data were inferred from 5 minute Rapid Scanning Service (RSS) satellite
datafrom the METEOSAT 10 EUMETSAT IR 10.8 um imagery with use of the
MSGProc/ViewM SG programs (Karidk, 2006). The horizontal resolution of the
original datawas nearly 3 x 3 km in the area of Slovakia. For better geolocation
of the coldest cloud areas, the data were transformed to higher resolution with
0.0040 degrees per pixel inlongitudinal and 0.0027 degrees per pixel inlatitudinal
direction with linear interpolation.
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3. Description of experiments

Model experimentsin the June 7, 2020 case were run with various types of input
data or setups in data assimilation, dynamics, or physical parameterization
(Table 2), which were sometimes different compared to the operational one. Data
assimilation has been devel oped and tested mainly in the frame of the hydrostatic
ALADIN/SHMU model (with radar data assimilation as exception). Predictability
of the convective events in this case was studied with the operational version of
the A-LAEF system. Here, the main focus was on the accuracy of the 3h
precipitation forecast, concerning both intensity and spatial distribution of
precipitation. Experiments related to model dynamics and diagnostics applied the
convection-permitting configuration, closeto ALARO 2. These runswere used to
explore the numerical stability and effectiveness/performance of such
configuration, and concentrated on non-hydrostatic features and life-cycle of
individual cells.

Table 2. Labelling and description of experiments.

Experiment Basic model Description
|abel version/domain
P432 ALADIN/SHMU  Referenceversionfor BLENDVAR experiments. No upper-air

data assimilation, only blending by DF.

ZTDS ALADIN/SHMU  BLENDVAR experiment with HRWIND AMV and GNSS
ZTD with static whitelist in 3D-Var.

AWS1 ALADIN/SHMU BLENDVAR experiment with HRWIND AMV and local
AWS from OPLACE in 3D-Var.

ALLD ALADIN/SHMU  BLENDVAR experiment with al available high-resolution data:
HRWIND AMV, GNSS ZTD, loca AWS, EMADDC and
OPLACE Mode-S, high resolution BUFR TEMPin 3D-Var.

C-REF ALADIN/CHMI  ALADIN/CHMI reference.

C-RAD ALADIN/CHMI ALADIN/CHMI, with OPERA radial winds.

D00 ALARO 2 Reference ICl scheme without NHHY parameter, 73 model
levels.

IDO1 ALARO 2 Sl scheme with NHHY =1.2.

IHOO ALARO 2 As D00 but with 1 km resolution and 100 levels.

IHO1 ALARO 2 As D01 but with 1 km resolution and 100 levels.

SWDIAG ALARO 2 73 model levels, ZTDS data for surface anaysis, QNSE

parameterization of turbulent fluxes, limitation for the Geleyn-
Cedilnik mixing length.
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3.1. Data assimilation experiments

As mentioned in Section 2.1, for initial conditions of the upper-air atmospheric
fields, the operational ALADIN/SHMU system uses spectral blending by digital
filter (DF) technique - without a direct use of observations. An extension of this
operational setup is proposed by an introduction of the three-dimensional
variational data analysis (3D-Var) step. 3D-Var is operationally used in similar
ALADIN systems and many other LAM NWP models worldwide (Gustafsson et
al., 2018). Our goal is to use a combination of DF blending step and 3D-Var
(BLENDVAR) configuration (Bucanek et al., 2015). Such a combination enables
us to benefit from large scale analysis provided by 4D-Var data assimilation of
the global model Arpege via DF blending, and to improve the small scales
description by using high resolution observations within ALADIN 3D-Var.

Inthe basic BLENDVAR prototype at SHM U, the conventional observations
(AMDAR, SYNOP, TEMP) and AMV HRWIND are utilized in the upper-air 3D-
Var. The observation data are taken from OPLACE — a common operational
database of RC LACE (Trojdkova et al., 2019). Downscaled ensemble
background error covariance matrix is applied (Bu¢anek and Brozkova, 2017). No
changein surface assimilation with respect to operational setup is made. Also, the
operational 6-hourly assimilation cycling interval was kept. This BLENDVAR
configuration is not yet superior to the operational versions in terms of the
objective verification scores (not shown). Therefore, new sources of high
resolution observations are being tested aiming to improve the small-scale
features. These comprise:

0 An extended set of about 500 national automatic weather stations (AWS)
reports from OPLACE, that is not availablein GTS;

0 Zenith total delays (ZTD) data from aimost 60 GNSS stations processed at
the Slovak University of Technology (Imrisek et al., 2020);

0 The Mode-S aircraft measurements available from OPLACE, used with a
thinning distance of 25 km, and 1500 Pa: EHS data from EMADDC and
MRAR data from the Czech Republic and Slovenia;

0 High resolution radiosonde data in BUFR format, that enables to take into
account real positions of measurements both in space and time. Total
increase of the assimilated data amount is quadrupled;

o Radia wind velocity data from the OPERA OIFS project, used with a
thinning distance 8 km (Catlo%ova, 2020).

A typical increase of data amount of individual datasets listed above
compared to basic 3D-Var setup is shown in Table 3.
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Table 3. Number of observation reports and number of individual datatypically assimilated
in a reference 3D-Var setup (left) and in the experiments with enhanced data sets (right)

for the 12 UTC network

reference 3D-Var setup enhanced observations usage
observations No of reports No of data No of reports No of data
SYNOP/AWS ~1500 ~5000 ~2000-2200 ~6000
GNSSZTD - - ~55 ~55
AMDAR/Mode-S ~350 ~1000 ~4500 ~13 000
HRWIND AMV ~50-100 ~100-200 ~50-100 ~100-200
TEMP radiosonde ~60 ~14 000 ~60 ~70 000
Redtal wind ~33000 ~370000

The series of BLENDVAR experiments were run for the case study of June
7, 2020 and the impact on the precipitation forecast was evaluated. In each
experiment adifferent high resolution observation set was utilized, as summarized
in Table 2. The experiment setup consisted of 3 days of assimilation cycling
starting from June 4, 2020, 00 UTC. Then the production forecast was launched
for 00 and 12 UTC.

3.2. Convection permitting experiments. non-hydrostatic dynamics

For realistic simulation of phenomenon at kilometric and hectometric resolutions,
the non-hydrostatic equation system must be exploited. The iterative centered
implicit (ICl) integration scheme (Bénard, 2003) is implemented in the current
dynamical core, because the original semi-implicit (SI) scheme with stable
extrapolation SETTLS (Hortal, 2002) used for the hydrostatic system was found
unstable.

In order to achieve stability of the ICI scheme already after thefirst iteration,
the linear operator associated with the semi-implicit scheme must include two
reference temperature profiles (Bénard, 2003, 2004). Because the real atmosphere
can not have two profiles at the same time, the linear operator can not be obtained
by linearization of the nonlinear system around the reference state.

This leads to the idea that there exists a class of linear operators that would
stabilize the Sl time stepping with SETTLS extrapolation for a non-hydrostatic
model aswell. Toinvestigate theidea, aclassof new operatorswas defined, where
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each equation is written as the sum of hydrostatic linear operator terms plus non-
hydrostatic departure terms. The departure terms in each equation are weighted
by the unique constant parameter. When all parameters are set to 1, the non-
hydrostatic linear operator is obtained. If the parameters are set to O, the linear
operator yields to the hydrostatic one. Therefore, the approach is called NHHY,
when the linear operator is modified using an additional set of parameters. The
feasibility of elimination into a single variable Helmholz solver for horizontal
divergence provides constraints between parameters, and the final spectral solver
contains only two additional tunable parameters concerning the existing state. The
paper with detailed description is currently in preparation.

A set of experiments was performed to validate the stability of NHHY
approach summarized in Table 4. Two model configurations were tested, derived
from the experimental ALARO 2 setup. First configuration was run at the
resolution of 2 km, 73 levels, and time step 120 s (experiments ID00 and ID01),
and the second one with resolution 1 km, 100 levels, and time step 60 s (IHOO0 and
IHO1 experiments). The stability and efficiency of SI SETTLS scheme with
NHHY parameters equal to 1.2 was compared against reference results obtained
with the ICl scheme. The results are discussed in the Section 4.5.1.

Table 4. Performance of various experiments with ALARO model dynamicswith 2 km and
1 km horizontal resolution, see Table 1 and Table 2 for the basic setup

Experiment D00 IDO1 IHOO IHO1

Integration time of 15 h forecast [9] 129 92 877 701

3.3. Convection-permitting experiments: structure and evolution of convective
cells

The SWDIAG experiment applied the emulated QNSE parameterization of
turbulent fluxes and the Geleyn-Cedilnik mixing length limited in stable regimes
as in the A-LAEF 2nd MP cluster (see Section 2). The analysis of the ZTDS
assimilation experiment (Table 2) was used as well. This combination provided
better agreement with precipitation observation as the reference ALARO 2 setup
(mainly in temporal and spatial distribution of intense convection), which was
important for the diagnostics of severe weather (Section 4.5) and comparison of
forecast and observed cloud properties.
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4. Case study and results
4.1. General description

Theregion of Slovakiawas situated in amoist, warm, and buoyant air mass ahead
of acold front, which was slowly propagating eastward (and reached the borders
of the Czech Republic and Slovakia on June 7, 2020, at around 20 UTC). Deep
convective clouds started to form after 08 UTC and propagated northward.
Thunderstorms typically occurred along prefrontal convergence lines (Fig. 2a).
The radar images and animations indicated lines of multicells and multicellular
development. Mesocyclonic storms were not documented in Slovakia, athough a
tornado was reported from Kanidw, southern Poland, at around 12 UTC (ESWD,
2020). In the afternoon hours (12-14 UTC), the most intense thunderstorms were
developing in the proximity of a very long convergence line over western
Hungary and Slovakia, continuing to southern Poland (denoted line L1). These
thunderstorms caused heavy rain and hail. There were numerous reports above all
from Hungary, e.g., from the surrounding of Esztergom and Dorog at the border
to Slovakia(Dorog-Esztergom I ddjarasa, 2020). Overall 30.8 mm of precipitation
was reported from the close meteorological station at Tat (OMSZ, 2020). It is
probable that these events can be attributed to the cell denoted C1. Later,
convection dissipated along the L1 line, but another one (L2) formed over
southwestern Slovakia at around 18 UTC causing local flash floods (Fig. 2b). A
related car accident was noted near Tesarske Mlyinany probably in relation with a
heavy thunderstorm denoted C2. Large hail was reported from Michalovce in the
eastern part of Slovakia at around 20 UTC (cell C3). The numerical simulations
of the event mostly concentrated on the above mentioned dominant features.
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Fig. 2. Column maximum (Cmax dBz) radar reflectivity of the SHMU, CHMU, and OMSZ
composite imagery with side views (vertical profiles with 2 km mesh): &) valid for June7,
2020, 12:00 UTC (L1 and C1 denote convergence line and cell investigated in the study);
b) valid for June 7, 2020, 20:00 UTC (L2, C2, and C3 refer to significant convective
features studied during this period).

4.2. Convective environment

The forecasts of the deterministic ALADIN/SHMU 00 UTC model run for the
12-15 UTC period of June 7 (Fig. 3, top left) showed high surface-based CAPE
(mostly exceeding 1000 Jkg) over Slovakia, which also corresponded with TEMP
rawinsonde reports (SBCAPE of 1523.6 Jkg assessed from Budapest and
810.26 Jkg from Géanovce soundings at 12 UTC). Moist areas could be seen on
the averaged 0-3 km relative humidity image for the central part of Slovakia,
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whereas the air over southwestern Slovakia was less saturated (Fig. 3, top right).
The peak 0-500 m specific humidity (exceeding 12 g/kg) and total precipitable
water (around 34 mm) was situated over the southern part of central Slovakia, east
of L1 (not shown), which coincided with CAPE maxima, and the model
development of the deep convection was also largely preferred in this region. It
could be deduced that divergence of flow was rather prevailing in the
southwestern flank of Slovakia and over its eastern part, while low-level
convergence areas appeared more frequent over the central part of Slovakia —
although its distribution was highly influenced by the rugged orography in this
region (Fig. 3, bottom |eft). There was only little wind shear between the 10 m
and 6 km heights over the western part of Slovakia (Fig. 3, bottom right), which
probably explains the lack of organized convective systemsin thisregion and the
typically multicellular behavior of the convection.

In the evening hours (18-21 UTC), the air was still conditionally unstable
with maximum SBCAPE just over the southern part of L2 (exceeding 1400 Jkg
— not shown). The wind shear also slightly increased over this area— probably as
a consequence of the approaching cold front.

Fig. 3. Forecasts of the ALADIN/SHMU convective environment parameters based on
June 7, 2020, 00:00 UTC and time-averaged for the 12-15 UTC period of the same day.
Upper left: SBCAPE [Jkg] and 10 m wind [m/s], upper right: 0-3 km relative humidity
[%] and wind [m/s], lower left: 980-850 hPa divergence [10* s and wind [m/s], lower
right: 10m-6km AGL wind shear [s] (absolute value in shades).

586



4.3. Operational models and data assimilation experiments
4.3.1. The 12-15 UTC period (along the line L1)

The most intense precipitation in this period occurred in the western part of
Slovakia with a maxima exceeding 30 mm/3 h (Fig. 4, top left). The spatial
coverage and intensity of the forecast precipitation was underestimated in the
00 UTC run of the operational SHMU model (Fig. 4, top right). In the operational
A-LAEF output, the position of the intense precipitation fitted better the observed
distribution in the western part of Slovakia in average (Fig. 4, bottom left) and
coincided with the position of the L1 line. There was less certainty regarding the
position and intensity of the extremes, but the EPS maxima predicted 20-30 mm
peaks along the main convergence line (Fig. 4, bottom right). Operational
deterministic forecast was improved using 3D-Var data assimilation of high
resolution observations. Any of BLENDVAR experiments yield more realistic
precipitation forecast against the reference P432 shown in Fig. 5, upper right plot
— both the position of precipitation patterns and their intensities were captured
better. The most promising experiment utilized humidity information from ZTD
GNSS data (Fig. 5, middle left plot), although the most intense precipitation was
situated at least 50-70 km south of the observed one. There were also more
precipitation patterns over Hungary and northwestern Slovakia. Even stronger
convective activity near the cell C1 of Fig. 2a was indicated in the AWS1
experiment with an enhanced number of assimilated automatic weather stations
(Fig. 5, middle right plot). These results suggest, that this convective case was
rather sensitive to initial conditions, where any change led to a slightly different
forecast. The impact of utilization of radial wind velocity measurements from
meteorological radars was checked independently, as those experiments were
conducted using ALADIN/CHMI configuration within an RC LACE scientific
stay. In this case the reference forecast (C-REF, Fig. 5, bottom left plot) was
aready much better than the ALADIN/SHMU one, aso due to the higher
resolution of ALADIN/CHMI (2.3 km/L87) and its non-hydrostatic dynamics.
With assimilation of radial winds, the precipitation coverage was changed and
more local precipitation patterns appeared - albeit not always correctly. The local
maxima near the C1 cell on the border of Slovakia and Hungary were more
realistic (C-RAD, Fig. 5, bottom right plot).
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Fig. 4. 3-hourly precipitation accumulation [mm] for June 7, 2020, 12-15 UTC period: from
INCA anaysis (top left); ALADIN/SHMU operational forecast (top right); A-LAEF
ensemble mean (bottom left); A-LAEF maximum of ensemble (bottom right). The model

forecasts are based on the 00 UTC run.

Fig. 5. 3-hourly precipitation accumulation [mm)] for June 7, 2020, 12-15 UTC period: INCA
analysis (top left); PA32 reference experiment (top right); and BLENDV AR data assimilation
experiments referred in Table 2: ZTDS (middle left), AWSL (middle right), C-REF (bottom
left), and C-RAD (bottom right). All model forecasts are based on the 00 UTC run.
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4.3.2. The 18-21 UTC period (line L2, cells C2 and C3)

In the evening period, the operational SHMU forecast (based on both 00 and
12 UTC runs) predicted the cold front-related precipitation but not the heavy
rainfall on the convergence line L2 (Fig. 7, second image in the first row). Some
additional (but rather weak) patterns could be seen also in southeast Slovakia, in
relation with C3. The BLENDV AR experiment with additional ZTD data (ZTDS,
Fig. 6, middle left panel) remarkably improved the localization of precipitation
along the convergence line L2, and indicated the presence of the convective cell
C2 (to be compared to INCA analysis, Fig. 6 top left panel, and P432 reference,
Fig. 6 top right panel). The false precipitation over Moravia and southwestern
Slovakia were reduced. Precipitation forecasts based on the experiment, where
3D-Var comprises a whole enhanced set of data (ALLD, Fig. 6, middle right
panel), maintained overall improvement with respect to the P432 reference, but
some of the local features became lost. All BLENDVAR experiments failed to
predict precipitation over central Slovakia and on the border with Poland.
Experiment with radial wind velocity data assimilation succeeded to indicate
convective precipitation in western Slovakia, albeit the maximum was shifted too
westerly. Development of the convergence line L2 was clearly indicated with
respect to the reference forecast. Precipitation patterns in central Slovakia were
also present but easterly shifted, and a signal of convective activity in southern
Poland and near the Ukrainian border was correct (Fig. 6, bottom right panel).
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Fig 6. 3-hourly precipitation accumulation [mm] for June 7, 2020, 18-21 UTC period:
INCA analysis (top left); P432 reference experiment (top right); and BLENDVAR data
assimilation experimentsreferred in Table 2: ZTDS (middle left), ALLD (middleright), C-
REF (bottom left), and C-RAD (bottom right). All model forecasts are based on the 12
UTC run. Position of Tesarske Mlynany and Michalovce is marked by black crosses.

Some members of the A-LAEF system were able to provide a correct
forecast of the heavy precipitation in the areas of C2 or C3 or very close to them
(Fig. 7, except the first row). There were no significant systematic differences
between the forecasts of EPS members belonging to respective MP clusters. Thus,
in this situation it is likely that the differences related to ESDA or stochastic
physics had an impact on the precipitation distribution in the respective members
rather than the choice of the physical parameterization.
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Fig. 7. 3-hourly precipitation accumulation [mm] of INCA andysis for June 7, 2020,
18-21 UTC period, corresponding forecasts of the operational ALADIN/SHMU and non-
hydrostatic ALARO 2 km models based on the 12 UTC (first row), followed by the A-LAEF
forecasts of EPS members based on the 12 UTC and valid for the same period as analysis.
Several EPS members demongtrated the ability of forecasting precipitation near C2 and C3
related events at Tesérske Mlynany and Michaovce (their position marked by crosses).
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4.4, Probabilistic outputs and predictability of convective precipitation

Asitwasaready discussed inthe previous subsection (Section 4.3), the probabilistic
approach of the A-LAEF system was clearly more successful in predicting the
convective event of June 7, 2020 than the operational deterministic modd. Thisis
especially true for the evening period, when the deterministic forecasts failed to
generate strong enough convective activity. Even the reference non-hydrostatic
ALARO 2 modd with higher spatial resolution was too dry in eastern Slovakia,
where in redity a high precipitation event C3 occurred (Fig. 7, third image in the
first row). Among the ensemble members of A-LAEF system there were different
scenarios. In some of them the eastern Slovakia was similarly without precipitation
- eg. members 04 and 13, while the other members captured the C3 event in
correspondence with INCA analysis pretty well - particularly members 01, 06, 09,
10, 14, 16 (Fig. 7). It can be concluded that small differences due to uncertainty
smulation in the initial and boundary conditions as well as the stochastic
perturbation of physics tendencies were the driving forces in this situation. Thus,
taking into account the above-mentioned scenarios would be crucia for considering
the predictability of this event. Furthermore, for June 7, 2020 situation it could be
shown that along the convergencelineswith highest assumed precipitation, therewas
also a high spread. While for the afternoon convection the spread was typically
5-10mm aong L1 (not shown) and the probability of at least low precipitation
(exceeding 1 mm) was 70-80% (Fig. 9, left), the spread was higher (10-20 mm) in
case of the evening, prefrontal convection along L2 (Fig. 8, left). Thiswas partialy
because of the more intense convection and higher EPS maxima (Fig. 8, right) but
probably also due to higher uncertainty in forecasting the precipitation occurrence
concerning thisevent (notethat theforecasts of L 2- and C3-related precipitation were
of shorter range than that of L1). The probability of precipitation exceeding 1 mm
was mostly below 50% in the vicinity of L2 and C2, despite the high precipitation
forecast by some EPS members (Fig. 9, right).

Fig. 8. Forecast of the A-LAEF EPS system based on June 7, 2020, 12 UTC and valid for
the 18-21 UTC period: 3-hourly precipitation spread [mm)] (left), EPS maximum of 3-
hourly accumulated precipitation [mm] (right).
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Fig. 9. Probability of precipitation for 1 mm threshold based on the A-L AEF EPS forecast
from June 7, 2020, 00 UTC valid for the 12-15 UTC period (left), and from 12 UTC valid
for the 18-21 UTC period (right).

4.5. Convection-permitting experiments
4.5.1. Dynamics optimization (from stability and performance per spective)

The experiments listed in Tables 2 and 4 are described in this subsection. As it
can be seen in Fig. 10, the SI SETTLS scheme was stabilized using NHHY
parameters set to 1.2 at resolution 2 km (IDO1). The overall character of the
solution is the same as the one computed with ICl reference (ID00). First row
presents the 3 h precipitation forecast from June 7, 2020 at 00 UTC for 12-15 h.
Thereisno signal that would indicate instability in the solution. The greenlineon
precipitation maps shows the direction of the vertical cross section viathe line of
convective cells. The cross sections are shown in the second row of Fig. 10. The
structure of the cell is consistent in both experiments. The order of differencesis
typical for this kind of modification in advanced NWP systems, where complex
feedback mechanisms are taking place under small forcing, especialy in
convective situations.

The same experiments were carried out with a 1 km version of the model as
well (IHOO0 and IHO1). The NHHY scheme was stable as well. The results are not
presented here as qualitatively they were not relevant, because the physical
parameterizations are scale-dependent and would require tuning, which was out
of scope of this paper.

593



Fig. 10. Thefirst column contains forecasts obtained with the reference | Cl scheme and the
second column with the NHHY scheme. In the first row, 3-hourly precipitation
accumulation [mm] for June 7, 2020 is presented, 12-15 UTC period, |eft: IDOO with ICI
scheme, right: IDO1 with the NHHY scheme. The vertical cross section viaconvective cells
(shown by green linein first row pictures) is at the second row.

4.5.2. Sructure and evolution of convective cells

The non-hydrostatic experiments focused mainly on small-scale (meso-gamma)
features, of which some could be observed on the radar imagery, mainly in the
12-15 UTC period (notably the C1 cell). The model runs produced severa
individual convective cells exhibiting 2-5 m/s vertical velocities at 700 hPa
(extremes were up to 7 m/s in the levels above) and 2-3 m/s downdrafts. An
intense and relatively persistent (could be traced between 11:50 and 13:30 UTC)
updraft formation moved from Hungary toward southern Slovakia (Fig. 11, |eft).
Initially, it was a cluster of several individual cells aggregating into one (not
shown). The closest strong and relatively stable pattern in the radar reflectivity
field was the C1 (Fig. 11, right), which could have also consisted of several
updrafts. It could aso have a WER (weak echo region) signature on its
northwestern flank (could be seen as a shallow cave in the reflectivity field on
several CAPPI 3 km images). Such signatures, when persistent, are sometimes
associated with stronger updrafts or mesocyclonic circulation and inflow of the
unsaturated environmental air (Moller et al., 1994). One could see such
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circulation in both storm-relative wind and vorticity fields in the vicinity of the
strongest updrafts of the simulated cells, at mid-levels (mostly 700 and 500 hPa).
The cyclonic vorticity was accompanied by lower geopotential (Fig. 12, left). For
C1, one could identify weak azimuthal shear in the field of the radial Doppler
velocity, close to the assumed WER signature (Fig. 12, right). Velocity
differences of 5 m/s on 5 km distance were inferred between local maxima and
minima, which corresponds to shear of about 0.001 s*. Not taking into account
some noisy artifacts in the Doppler velocity, this shear could be rather a
consequence of a weak cyclonic circulation than a supercellar MVS
(mesocyclonic vorticity signature), which usually exhibits of about one order
stronger shear (AMS Glossary of Meteorology, 2000). Similarly, the magnitude of
vorticity of the simulated vortex was below 0.005 s?, and it could possibly be a
kind of mesovortex (Weisman and Trapp, 2003) but rather confined to mid-levels.
The simulated convection did not always propagate as an organized system, but
new updrafts and cells were generated at the flanks of the downdrafts of older
cells. For the investigated convective feature, aline of new updrafts emerged on
the western and northern flanks of its outflow (Fig. 13, left). However,
development of new rain patternswas rather sparse in the westward direction (not
shown). On the radar imagery, one could see a line of new but weak cells
westward of C1 (Fig. 13, right). These cells quickly decayed, probably as aresult
of unfavorable humidity and shear conditions over southwestern Slovakia.

Fig. 11. Left: forecast of the ALARO 2 of the June 7,2020, 00 UTC run showing the field
of 700 hPavertical velocity (shades, m/s), geopotential height (lines, by 2 gpm), and storm-
relative wind (m/s) valid for 13 UTC. The vector denoted “c” in the lower right corner
depicts the storm motion vector. Right: CAPPI 3 km radar reflectivity (dBz) on June 7,
2020, 12:05 UTC. The arrow points toward the position of cell C1 defined by the vertical
velocity on theleft and toward the radar reflectivity maximaon theright. Letter W indicates
the position of WER-like echo at the northwestern flank of C1. L highlights the local low
in the geopotential field.
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Fig. 12. Left: forecast of the ALARO 2 of the June 7, 2020, 00 UTC run showing the field
of 700 hPa vertical vorticity (shades, 10°s?), geopotential height (lines, by 2 gpm), and
storm-relative wind (m/s) valid for 13 UTC. Right: PPI 1.0° radial Doppler velocity (m/s)
onJune 7, 2020, 12:05 UTC. The arrow points toward the center of cyclonic circulation on
theleft and toward cyclonic shear in the radial Doppler velocity field on the right. Meaning
of L asin Fig. 11. The enlarged detail depictsthe region of azimuthal shear foundin Clin
the Doppler velocity field (indicated by vectors and vauesin m/s).

Fig. 13. Left: forecast of the ALARO 2 of the June 7, 2020, 00 UTC run showing the field
of rain mixing ratio (shades, 10° kg/kg) , 850 hPavertical velocity (lines by 0.5 mi/s, solid
— updrafts, dashed - downdrafts), and 100m wind (m/s) valid for 13 UTC. Right: Cmax
radar reflectivity (dBz) on June 7, 2020, 12:30 UTC. The arrow points toward a line of
updrafts generated on the leading edge of the cell outflow on the left, and a line of new
cells emerging (and then quickly decaying) on the western flank of C1 on theright.

4.5.3. Comparison with satellite imagery
The speed of vertical growth of convective clouds depends on theintensity of their

updrafts and vertical velocity, especially close to the top of the clouds. On the
satellite imagery, the evolution of convection can be followed on the infrared
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channels and CTB. The latter parameter is not exactly the temperature of the
environment, but it largely depends on the air temperature at the same level
(Hanna et al., 2008). In fast evolving clouds with higher vertical velocities, the
cooling of CTB is generally aso faster. It was expected that in case that the
magnitude of vertical velocitiesin the simulated cloudsis similar to the real ones,
one should also observe nearly similar CTT and CTB trends. The CTB and CTT
comparison is reasonable during the rising phase of the convective cloud
(thunderstorm), until it reachesits top and an anvil cloud is created. In case there
is already a high cloudiness (cirrus clouds), the determination of the cloud top
cooling rate becomes more difficult or not possible at all. There are also other
limitations such as the resolution of the satellite imagery, which currently makes
it difficult to trace the very early (cumulus) stage of the clouds.

For comparison, we selected rather isolated (not necessarily the most intensel)
convective clouds on the satellite imagery, which had their counterparts in the
SWDIAG experiment (developing at nearly the same time and place). An example
was the convection over the southern part of central Slovakia, close to the
Hungarian border (Fig. 14, left). The CTB of its clouds could be determined at
10:50 UTC, when it was-15 °C, and it reached its minimum (-55 °C) at 11:45 UTC
(Fig. 14, right). According to the 12 UTC Budapest sounding, this temperature
would be close to the air temperature at the tropopause (at 11 km height). The
evolution of asimilar cell in the model forecast started somewhat later (similar
CTT asthe satellite CTB appeared around 11:00 UTC). The minimum CTT (-53
°C) was reached in the mature stage of the cell and appeared 25 minutes later
compared to CTB. The best agreement between CTT and CTB rate of cooling was
in the temperature interval between -20 °C and -40 °C. Also in case of other cells
(e.g., within L1) it could be seen, that the model cooling of the CTT is faster in
the early stage of deep convection (i.e., the first 15-20 minutes of evolution) and
it slowed down after, while opposite behavior was observed for the CTB course.
Apart from technical reasons, this could also be related to the local environment
and vertical distribution of buoyancy (e.g., presence of shallow inversions or
stable layers, which slow down the growth of the thunderstorm clouds and which
are often absent in the NWP forecasts).
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Fig. 14. Left: brightness temperature (K) from Meteosat 10 infrared 10.8um channel over
Slovakia on June 7, 2020, 11:45 UTC. The arrow points toward the convective cloud, of
which the cloud-top temperature evolution was studied. Right: time-evolution of model-
based cloud top temperature CTT in °C (blue line with circles) and satellite-based
brightness temperature CTB in °C (orange line with triangles) of the cloud shown on the
left. Both CTT and CTB curves start at 10:50 UTC. In the model, the evolution of asimilar
cell as investigated in the satellite imagery was delayed, but both curves were transposed
in order to compare the rapid development phase of the convective cloud.

5. Conclusion and per spectives

In the presented situation, multicellular convection developed, occasionally
causing severe weather. Especially point forecasts of such eventsis challenging,
because the distribution of precipitation is very uneven, convection forms along
relatively narrow convergence lines, which sometimes cannot be defined with
sufficient precision in the model (due to the influence of orography but also
outflows of previous convective cells and systems). Deterministic forecasting of
heavy precipitation in such cases is difficult either by hydrostatic or higher
resolution non-hydrostatic models —thisisillustrated also by the fact that several
model runs failed to forecast precipitation along the L2 line or near C3 even in
very short time-range and despite favorable environment for deep convection.

In the presented case study, the initiation of convection has been better
specified with enhanced assimilation of high resolution datafrom various sources,
whose positive impact (bigger number of patterns, more intense precipitation)
could be observed even after more than 18 h of integration (here illustrated only
up to 15 h). Further improvement could be obtained with an advancement of the
data assimilation setup. Ongoing work on the BLENDVAR configuration
comprises diagnostics of observation and background error statistics according to
Desroziers et al. (2005), increase of the analysis frequency, and employment of
other types of observations. Revision of the background error statistics derivation
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according to Bucanek and Brozkova (2017) is planned as well when more HPC
resources are available.

In the current study, even improved data assimilation or change of the lateral
boundary conditions were mostly not sufficient to define the exact position of
major convergence lines or the intensity of the heaviest precipitation. The non-
hydrostatic dynamic adaptations based on ALARO 2 led to finer precipitation
structures but did not substantially correct their position with respect to outputs of
their driving hydrostatic models. Moreover, initiation of convective cellsin non-
hydrostatic models seems to be even more complicated — dependent not only on
the environment but also on the interactions of the smulated cells and their
outflows. Even if deep convection had devel oped, the resulting precipitation was
often too weak with respect to both observation and precipitation parameterized
by hydrostatic models. This could be also due to parameterizations setup in the
non-hydrostatic models (e.g., for microphysics), for which further investigationis
planned in the near future on more cases with deep convection and was only
marginally studied here.

The forecasts of the A-LAEF system provided the most exact location of
precipitation along lines L1 or L2, and several EPS members succeeded also to
forecast local intense rainfall related to C2 and C3 cells. Comparison of results
from respective MP clusters indicates that the influence of different setups of
physical parameterization did not have a systematic effect (on the contrary to
some other weather situations, e.g., winter temperature inversion, not presented
here). More impact could be expected in relation with ESDA assimilation or
application of stochastic perturbation, which possibly imitate local effects
important for the initiation of deep convection and are absent in the deterministic
model runs. The A-LAEF also provided useful information about the forecast
uncertainty, which was particularly high for the heavy precipitation events. The
probability of precipitation exceeding 10 mm was rarely bigger than 40%. Such
outputs, evenif correct, could be possibly underestimated by non-experts. Surveys
among users (e.g., from civil protection) indicate that they prefer rather high
probability thresholds to take measures, mostly above 50% chance of occurrence
(Kox and Ulbrich, 2015). An issue to be investigated in the future is whether a
bigger ensemble could possibly specify the local distribution of high precipitation
with better precision and improve the forecast confidence.

The structure and evolution of convection simulated in the experiments with
non-hydrostatic dynamics showed some traits similar to radar observations. Weak
mesoscale vortices, which developed in the model in the vicinity of the most
intense cells could exist in some significant thunderstorms (e.g., in the cell C1).
Previous studies (e.g., Csirmaz et al., 2013) suggested that mesocyclones can
develop even in aweak-shear environment, although these vortices are sometimes
confined only to arelatively shallow layer of the low- or mid- troposphere. Y et,
it is uncertain whether these vortices also play a substantial role in the life cycle
of these thunderstorms (e.g., concerning their longevity). One could also observe
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similar multicellular behavior as in the observations, e.g., development of new
updrafts on the outflow boundaries of older storms. However, the updraftsin the
simulations were often relatively weak (in order of only a few m/s), though one
should consider that these velocities represent an average in the given 2 x 2 km
grid box. The CAPE values would indicate much higher (well exceeding 10 m/s)
maximum updraft velocities, which are usualy present either in observed or
simulated multicell thunderstormsin other studies, even in weak shear conditions
(Kirkpatrick et al., 2009; Fovell and Dailey, 1995; Fovell and Tan, 1998). It is
possible that the weaker updrafts in the ALARO 2 model simulations had also a
consequence of underestimation of precipitation and lack of convection in certain
areas (e.g., northwest Slovakia, southern Poland), but this would need further
investigation.

The possibility of simulating the convection explicitly also raises the
guestion of how to verify the magnitude of vertical velocity of convective cells
generated in the model, which is usually not measured directly. One way is to
compare the evolution of model clouds and their properties (e.g., cloud top
temperature) with the rapidly updated satellite imagery. However, thisis possible
rather in case of isolated cells and despite some promising results, there are still
large uncertainties in the algorithm concerning the microphysical properties of
cloudiness at the top of the thunderstorms and its distinguishing from ordinary,
non-convective cirrus clouds. Similarly, the determination of satellite CTB isalso
limited due to current resolution of the infrared imagery, which will be improved
after launching the Meteosat Third Generation satellite (MTG).

Further progress in calculation efficiency of non-hydrostatic models is
inevitable, aswell asthe stability of such computation. It was shown that the semi-
implicit scheme with NHHY formulation could help to fulfil such goas being
significantly faster than the current iterative centered implicit scheme. The
execution times of 15 h forecast are shown in the Table 4. The relative speedup
of model execution with NHHY scheme is 20% for the 1 km resolution
experiment and 28% for the 2 km resolution one. Therefore, NHHY approach
allows large improvement of execution efficiency at model resolutions around
2-1 km, and it potentially opens the possibility to run convection-permitting EPS
systems also at meteorological centers where medium size HPC systems are
installed. Certainly, more tests are needed in future in other conditions and
different types of severe weather (including mesoscale convective systems and
supercells) or even on continuous periods of time to examine the robustness of the
new scheme and prediction capabilities of the non-hydrostatic version of ALARO.

All the above mentioned activities should be joined in the future in aform of
convection-permitting EPS, using data assimilation with high resolution
observations, run at short range and on sufficiently large domain (similarly to the
current ALADIN/SHMU).
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Abstract— In the last decades, wind power became the second largest energy source in
the EU covering 16% of its electricity demand. However, due to its volatility, accurate
short range wind power predictions are required for successful integration of wind energy
into the electrical grid. Accurate predictions of wind power require accurate hub height
wind speed forecasts, where the state-of-the-art method is the probabilistic approach
based on ensemble forecasts obtained from multiple runs of numerical weather prediction
models. Nonetheless, ensembl e forecasts are often uncalibrated and might also be biased,
thus require some form of post-processing to improve their predictive performance. We
propose a novel flexible machine learning approach for calibrating wind speed ensemble
forecasts, which results in a truncated normal predictive distribution. In a case study
based on 100m wind speed forecasts produced by the operational ensemble prediction
system of the Hungarian Meteorological Service, the forecast skill of this method is
compared with the predictive performance of three different ensemble model output
statistics approaches and the raw ensemble forecasts. We show that compared with the
raw ensemble, post-processing always improves the calibration of probabilistic and
accuracy of point forecasts, and from the four competing methods, the novel machine
learning based approach results in the best overall performance.

Key-words: ensemble calibration, ensemble model output statistics, multilayer
perceptron, wind energy, wind speed
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1. Introduction

The increasing challenges caused by consequences of air pollution and emission
of greenhouse gases highlight the importance of transition of energy production
towards renewabl e energy sources. Besides the classical hydro power, in the last
decades, photovoltaic and wind energy fulfilled larger and larger part of energy
demand. In 2020, the world set a new record by adding 93 GW of new wind
turbines, so the total capacity of wind farms reached 744 GW covering 7% of
the global electricity demand (World Wind Energy Association, 2021). In the EU
(United Kingdom included), this proportion reached 16%, and the (world)
record is held by Denmark, where wind accounted for 48% of the electricity
consumed in 2020 (Wind Europe, 2021). However, wind energy poses serious
challenges to traditional electricity markets, so accurate short range (between
several minutes and a couple of days) prediction of wind power is of utmost
importance for wind farm managers and electric grid operators.

Although the relation between wind speed and produced wind energy is
nonlinear and might also be nonstationary, more reliable wind speed forecasts
obviously result in more reliable predictions of produced electricity. Wind speed
forecasts, similar to other meteorological variables, are based on numerical
weather prediction (NWP) models describing atmospheric processes via systems
of partial differential equations. The state of the art approach is to run an NWP
model several times with different initial conditions which results in an
ensemble of forecasts (Bauer et al., 2015). Ensemble forecasts enable estimation
of situation dependent probability distributions of future weather variables,
which opens the door for probabilistic weather forecasting (Gneiting and
Raftery, 2005), where besides getting a point forecast, the forecast uncertainty is
also assessed.

Recently, all mgjor weather centres operate their own ensemble prediction
system (EPS), e.g., the 35-member Prévision d Ensemble ARPEGE® (PEARP)
EPS of Méteo France (Descamps et al., 2015) or the 11-member Applications of
Research to Operations at Mesoscale EPS (AROME-EPS; Javorné Radnocz et
al., 2020) of the Hungarian Meteorological Service (HMS), whereas the largest
ensemble size corresponds to the 51-member EPS of the European Centre for
Medium-Range Weather Forecasts (Buizza et al., 1998). Nowadays ensemble
weather forecasts are also popular inputs to probabilistic forecasts of renewable
energy (Pinson and Messner, 2018).

However, ensembl e forecasts often appear to be uncalibrated and/or biased,
this feature has been observed in severa operational ensembles (see, eg.,
Buizza et al., 2005). A possible solution is the use of some form of statistical
post-processing (Buizza, 2018), where nonparametric methods usually capture
predictive distributions via estimating their quantiles (see, e.g., Friederichs and
Hense, 2007; Bremnes, 2019), whereas parametric post-processing approaches

1 Action de Recherche Petite Echelle Grande Echelle (i.e. Research Project on Small and Large Scales)
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provide full predictive distributions of the future weather quantities (see, e.g.,
Gneiting et al., 2005; Raftery et al., 2005). Recently, machine learning based
methods also gain more and more popularity (see, e.g., Rasp and Lerch, 2018;
Taillardat and Mestre, 2020); for a detailed overview of statistical calibration
techniques we refer to Wilks (2018) or Vannitsem et al. (2021).

Here we focus on a weather quantity important in energy production and
investigate statistical post-processing of ensemble forecasts of wind speed
measured at hub height (100m). In this context, Tailor et al. (2009) proposes
kernel dressing with Gaussian kernel left truncated at zero (TN; truncated
normal), while Messner et al. (2013) considers forecasts based on inverse power
curves and applies a censored normal predictive distribution. However, any
post-processing method appropriate for wind speed can be applied, and we
concentrate on the ensemble model output statistic (EMOS; Gneiting et al.,
2005) approach, where the predictive distribution is a single parametric
probability law with parameters depending on the ensemble forecasts via
appropriate link functions. To account for the non-negativity and right skew of
wind speed, Thorarinsdottir and Gneiting (2010) proposes a TN, Baran and
Lerch (2015) a log-norma (LN), whereas Baran et al. (2021) a truncated
generalized extreme value (TGEV) predictive distribution, and several methods
for combining these probabilistic forecasts have also been developed (see, e.g.,
Lerch and Thorarinsdottir, 2013; Baran and Lerch, 2016, 2018).

In the present paper we test the forecast skill of TN, LN, and TGEV EMOS
approaches on AROME-EPS forecasts of hub height wind speed. We also
introduce a novel model with TN predictive distribution, where using the ideas
of Rasp and Lerch (2018) and Ghazvinian et al. (2021), location and scale
parameters of the TN law are connected to the ensemble members via a
multilayer perceptron neura network (MLP; Goodfellow et al., 2016).
Compared with the case of fixed link functions, this latter approach allows more
flexibility in modeling and straightforward inclusion of new covariates as well.
Note that TN, LN, and TGEV EMOS approaches and some of their
combinations have aready been successfully applied for calibration of surface
wind speed forecasts of the 11-member Aire Limitée Adaptation dynamique
Développement International-Hungary Ensemble Prediction System of the HMS
(Horanyi et al., 2006), see, e.g., Baran et al. (2014).

The paper is organized as follows. In Section 2, the detailed description
of the AROME-EPS is given, while in Section 3, the applied post-processing
methods and considered verification tools are reviewed. The results of our
case study is presented in Section 4 followed by a concluding discussion in
Section 5.
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2. Data

The 11-member AROME-EPS of the HMS covers the Transcarpathian Basin
with a horizontal resolution of 2.5 km (Javorné Radnoczi et al., 2020). It
consists of a control member and 10 ensemble members obtained from
perturbed initial conditions. The dataset at hand contains ensemble forecasts of
wind speed (m/s) at hub height (100m) together with the corresponding
validation observations for three wind farms in the northwestern part of Hungary
(Acs, Janossomorja, and Papakovécsi) for the period May 7, 2020 to March 28,
2021. All forecasts are initialized at 0000 UTC with a temporal resolution of 15
minutes and maximal forecast horizon of 48 h resulting in atotal of 192 forecast
lead times.

3. Post-processing methods and verification tools

Non-homogeneous regression or EMOS is one of the most popular parametric
post-processing approaches, probably due to its computational efficiency and
excellent performance for a wide range of weather variables. EMOS models for
different weather quantities differ in the parametric family specifying the
predictive distribution; however, most of the exising EMOS models are
implemented in the ensembleM OS package of R (Yuen et al., 2018).

In the following sections let f3, f,, ..., f1; denote the 11-member AROME-
EPS hub height wind speed forecast for a given location, time, and lead time,
where f; = ferry iS the control forecast, while f5, f, ..., fi1 correspond to the
10 statistically indistinguishable (and thus exchangeable) ensemble members

fens 1, fENs 2> - fENs,10 O€nerated using random perturbations. Further, let f
denote the ensemble mean, j_fENS denote the mean of the 10 exchangeable

members, and S? and MD denote the ensemble variance and ensemble mean
absolute difference, respectively, defined as

1

) _
§$%:=13i (=7 and  MD:i= SR NEL Ifi— fol.

3.1. Truncated normal EMOS model

Let Ny(u, 0?) denote the TN distribution with location u, scale o > 0, and
lower truncation at 0, having probability density function (PDF)

9@l 0) =L p((x — 1)/0)/®(u/0),  if x20,
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and g(x|u,0) =0, otherwise, where ¢ is the PDF; while ® denotes the
cumulative distribution function (CDF) of a standard normal distribution. The
proposed TN EMOS predictive distribution for hub height wind speed based on
the AROME-EPS ensemble forecast is

No(ag + aérroferre + alzst]_rENS' bg + biMD), )

where ay, actrL, Agns, bo, b1 € R. The same model is applied by Heni et al.
(2014) to model square root of 10m wind speed, and the suggested method is a
dlight modification of the TN EMOS approach of Thorarinsdottir and Gneiting
(2010), where the square of the scale parameter is an affine function of the
ensemble variance, that is 02 = b3 + b7S?. Exploratory tests with the dataset at
hand show that neither modelling the square root of the data, nor linking
location to the ensemble variance result in better forecast skill than the use of

Eq. (2).
3.2. Log-normal EMOS model

As an dternative to the TN EMOS approach, we consider the EMOS model of
Baran and Lerch (2015), where the mean m and variance v of the LN predictive
distribution are affine functions of the ensemble members and the ensemble
variance, respectively, that is

_ 2 2 7 _ p2 4 p2
m = ay + aérrpferrL + @nsfpys  and v =5+ BES?

where a, @ctrL, 2ens, Bo, B1 € R. The heavier upper tail of the LN distribution
alows abetter fit to high wind speed values.

3.3. Truncated generalized extreme value EMOS model

Another possible solution to address reliability of probabilistic forecasts for high
wind speed is the use of the GEV EMOS approach proposed by Lerch and
Thorarinsdottir (2013). The GEV distribution GEV (i, 0,&) with location p,
scaled > 0, and shape ¢ is defined by CDF

exp(—[L+EED]YE),  if§#0;

G(x|lw,0,8) = exp(—exp(— %)), if £=0,

for 1+ ¢ (%) > 0 and G(x|u, 0, &) = 0, otherwise. However, as demonstrated

by Lerch and Thorarinsdottir (2013) and Baran and Lerch (2015), the GEV
EMOS model might assign positive predicted probability to negative wind
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speed. To correct this deficiency, Baran et al. (2021) proposed to truncate the
GEV distribution from below at zero and considered a TGEV predictive
distribution 7GEV (u, g, &) with location p, scale ¢ > 0, and shape ¢ defined by
CDF
G(x|lwo,d)-GOlpod) . _
Go(xlﬂ; g, 5) = 1-G(0|u,0.8) ’ if G(Olu’ o E) < 1’
1, if G(O|y, 0,8) =1,

forx > 0,and G(x|u, 0,&) = 0, otherwise.
For the 11-member AROME-EPS, location and scale parameters of the
TGEV EMOS modd are

1 =7vo+YcrrifetrL + Vensfgys  and o = 0§ +oif,

With v, YeTrL, YENS, 00, 01 € R, while the shape parameter ¢ does not depend on
the ensemble members. In order to ensure a finite mean and positive skewness,
the shapeis kept in theinterval | — 0.278,1/3].

3.4. Parameter estimation

Parameter estimation in the TN, LN, and TGEV EMOS models described in
Sections 3.1 — 3.3 is based on the optimum score principle of Gneiting and
Raftery (2007). The estimates are obtained as minimizers of the mean value of a
proper scoring rule over an appropriate training dataset. Here we consider one of
the most popular proper scores in atmospheric sciences, namely the continuous
ranked probability score (CRPS; Wilks, 2019, Section 9.5.1). Given a
(predictive) CDF F and areal value (observation) x, the CRPS is defined as

© 1 ’
CRPS(F,x) = [_ [F(¥) — [yyaxy]®dy = EIX — x| =S E[X - X'|, (2)

where I denotes the indicator function of a set H, while X and X' are
independent random variables distributed according to F and having afinite first
moment. CRPS is a negatively oriented score, that is the smaller the better, and
the right-hand side of Eq. (2) implies that it can be expressed in the same units
as the observation. Note that the CRPS for TN, LN, and TGEV distributions can
be expressed in closed form (see Thorarinsdottir and Gneiting (2010), Baran
and Lerch (2015), and Baran et al. (2021), respectively), which allows an
efficient optimization procedure.

A crucia issue in statistical calibration is the selection of training data.
Here the different forecast horizons are treated separately, and we use rolling
training periods, which is a standard approach in EMOS modeling. In this
training scheme, parameters for a given lead time are estimated with the help of
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corresponding forecast—observation pairs from the preceding n calendar days.
Further, both regional (or global) and loca EMOS models are investigated. In
the regional approach, all data from the training period are considered together,
providing asingle set of EMOS parameters for all three wind farms. In contrast,
local estimation results in different parameter estimates for different wind farms
by using only data of the given location. In general, loca models outperform
their regional counterparts (see, e.g., Thorarinsdottir and Gneiting, 2010),
provided the training period is long enough to avoid numerical stability issues
(Lerch and Baran, 2017).

3.5. Machine learning based approach to wind speed modeling

As mentioned in the Introduction, based on works of Rasp and Lerch (2018) and
Ghazvinian et al. (2021), we applied a machine learning approach to estimate
the parameters of the predictive distribution in a TN model. In this case, instead
of looking for the parameters ay, actrL, @gns, bo, b1 in EQ. (1), location and
scale are estimated directly, without assuming that they depend on the ensemble
in a prescribed way. Practically this means, that some features derived from the
ensemble (e.g., the control member, or the ensemble standard deviation) are
used as inputs of a multilayer perceptron (MLP), while the trained network
provides a two-dimensional vector corresponding to the location and scale
parameters. Similar to the previous models, the network is trained by
minimizing the mean CRPS over the training data.

In an MLP. some hidden layers connect the input layer and the output one,
the number of layers and the number of neurons in the different hidden layers
are tuning parameters of the network. Starting from the first hidden layer, each
neuron of the given layer computes a weighted sum of the values provided by
the neurons in the previous layer, adds a bias, and via a so-called transfer
function, applies atransformation to the result.

In the present work we train an MLP with one hidden layer containing 25
neurons, the applied transfer functions are the exponential linear unit (ELU; see
e.g., Ghazvinian et al., 2021) function in the hidden layer, and the linear
function in the output layer. After some experiments, in the final training we
decided to use the control forecast, the mean of the exchangeable ensemble
members, and the standard deviation of the 11 members as input features of the
network. Based on Ghazvinian et al. (2021), to ensure the positivity of the
location and scale parameters, their estimates are given by exp(6,) and exp(6,),
where 8, and 6, are the values provided by the two neurons of the output layer.

By the training of a network, the number of the training samples is dways a
critical point: a relatively small training set can easily result in overfitting, which
means aweak performance on the test set. In order to avoid this problem, we apply
a regiona estimation, moreover, we do not handle the different lead times
separately; for a given training period we train only two networks, one for the 0—
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24h forecasts, another for the 24-48h forecasts. We made a tria to take into
account the lead time in the training by extending the features with a fourth one,
containing the ranks of the lead times; however, this modification did not improve
the predictive performance of the network. The lack of significance of the forecast
horizon might be explained by the diurna cycle in the ensemble standard deviation,
which indicates a direct relation between forecast uncertainty and lead time.

3.6. Verification tools

As argued by Gneiting et al. (2007), the aim of probabilistic forecasting is to
maximize the sharpness of the predictive distribution subject to calibration. The
former refers to the concentration of the predictive distribution, whereas the
latter means a statistical consistency between the validating observation and the
corresponding predictive distribution. These goals can be addressed
simultaneously using proper scoring rules quantifying the forecast skill by
numerical values assigned to pairs of probabilistic forecasts and validating
observations. In the case study of Section 4, for a given lead time, competing
forecasts in terms of probability distribution are compared with the help of the
mean CRPS over all forecast cases in the verification data. The improvement in
terms of CRPS of a probabilistic forecast F with respect to a reference forecast
Frer Can be assessed with the continuous ranked probability skill score (CRPSS,
see, e.g., Gneiting and Raftery, 2007) defined as

CRPSF

CRPSp

CRPSS =1 —

)

where CRPSp and CRPSp_ . denote the mean score values corresponding to
forecasts F and F,.f, respectively. Here larger values indicate better forecast
skill compared to the reference method.

Calibration and sharpness can also be quantified by the coverage and
average width of the (1 —a)100%, a €]0,1[, central prediction interval,
where calibration is defined as the proportion of validating observations located
between the lower and upper /2 quantiles of the predictive distribution. For a
well calibrated forecast, this value should be around (1 — a)100 %, and in order
to provide a fair comparison with the 11-member AROME-EPS, a should be
chosen to match the nominal coverage of 83.33 % (10/12 x 100 %) of the raw
ensemble.

Simple graphica tools for assessing calibration of probabilistic forecasts are
the verification rank histogram of ensemble predictions and its continuous
counterpart, the probability integral transform (PIT) histogram. Verification rank is
defined as the rank of the verifying observation with respect to the corresponding
ensemble forecast (Wilks, 2019, Section 9.7.1), whereas PIT is the value of the
predictive CDF evaluated at the observation (Wilks, 2019, Section 9.5.4). For a
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properly calibrated ensemble, all ranks should be equally likely, while calibrated
predictive distributions result in standard uniform PIT vaues.

Finally, the accuracy of point forecasts, such as median and mean, is
quantified with the help of mean absolute errors (MAES) and root mean squared
errors (RM SES), respectively.

4. Results

We start our analysis by determining the appropriate training-period length for
our post-processing approaches. We consider a fixed verification period from
July 8, 2020 to March 28, 2021 (264 calendar days) and compare the forecast
skill of both local and regional TN EMOS models estimated using 20,21, ...,60
day rolling training-periods. Fig. 1 shows the mean CRPS taken over al forecast
cases and lead times and the MAE of median forecasts as functions of the
training-period length. Both plots clearly demonstrate that for longer training
periods, the local TN EMOS is more skillful than the regional one. CRPS and
MAE of the latter stabilize after day 51, while the corresponding scores of the
local TN EMOS also seem to level off there. Hence, for TN EMOS modeling, a
51-day training-period seems to be a reasonable choice, and the same training-
period length is applied for LN and GEV EMOS models aswell. A detailed data
analysis confirmed that this length is aso appropriate for the machine learning
approach of Section 3.5 (TN MLP), this choice of training data leaves a total of
273 cdendar days (period June 29, 2020-March 28, 2021) for model
verification. Further, as in general, loca versions of the tested EMOS
approaches dlightly outperform the regional ones, thus, in what follows, only the
scores of the local models are reported.

Fig. 1. Mean CRPS of probabilistic (a) and MAE of median (b) forecasts for local and
regionadl TN EMOS models as functions of training-period length.
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Fig. 2a shows the mean CRPS of post-processed and raw ensemble
forecasts as functions of the lead time, whereas in Fig. 2b, the corresponding
CRPSS values with respect to the raw ensemble are plotted. In general, all post-
processing approaches outperform the raw ensemble for all lead times, but the
advantage of post-processing decreases with the increase of the forecast horizon.
The best overall CRPSS taken over al lead times and forecast cases belongs to
the TN MLP model (0.111), followed by the local TN EMOS method (0.103);
however, there are certain forecast horizons (especialy around 20h and 23h),
where the latter exhibits slightly better predictive performance. For the TGEV
and LN EMOS approaches, these overall CRPSS values are 0.091 and 0.095,
respectively.

Fig. 2. Mean CRPS of post-processed and raw ensemble forecasts of wind speed (a) and
CRPSS with respect to the raw ensemble (b) as functions of lead time.

The improved calibration of post-processed forecasts can aso be observed
in Fig. 3a showing the coverage of the nominal 83.33% central prediction
intervals for different lead times. The coverage of the AROM E-EPS ranges from
50% to 70%, and in general, increases with the increase of the lead time,
whereas all post-processed forecasts for al lead times result in coverage values
that are rather close to the nomina level. In particular, there is no visible
systematic difference in the coverage values of the three investigated EMOS
models, whereas the TN MLP approach seems to exhibit some kind of diurnal
cycle. However, as depicted in Fig. 3b, the cost of the better calibration should
be paid in the deterioration of the sharpness. The raw ensemble produces far the
narrowest central predictive intervals, there is no difference in sharpness
between the competing EMOS models, whereas the diurnal cycle in sharpness of
the TN MLP is completely in line with the corresponding coverage. Note that
similar diurnal cycles can be observed in the ensemble standard deviation and
ensemble mean difference as well.
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Fig. 3. Coverage (a) and average width (b) of the nominal 83.33 % central prediction
intervals of post-processed and raw forecasts as functions of lead time.

While statistical post-processing substantially improves the calibration of
probabilistic forecasts, it does not really effect the accuracy of point predictions.
In Fig. 4a, the difference in MAE of the median forecasts of the various
calibration methods from the MAE of the raw ensemble are plotted as functions
of the lead time. Similar to the mean CRPS, models with TN predictive
distribution show the best performance for all lead times, however, even the
largest difference in MAE is less than 0.1 m/s. The same behavior can be
observed in Fig. 4b displaying the difference in RMSE of the mean forecasts.
This can indicate that the ravw AROME-EPS forecasts are already unbiased and
indeed, the mean biases of the ensemble mean and median taken over al
forecast cases of the whole available period May 8, 2020 to March 28, 2021 and
al lead times are just 0.136 m/s and 0.122 m/s, respectively, while the overall
MAE equals 1.285 m/s and the overall RMSE is 1.669 m/s.

Fig. 4. Difference in MAE of the median forecasts (a) and in RM SE of the mean forecasts
(b) from the raw ensemble as functions of lead time.
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Finally, Fig.5 shows the verification rank histograms of raw and PIT
histograms of post-processed forecasts for four different lead time intervals. The
U-shaped verification rank histograms clearly indicate the underdispersive
character of the raw ensemble; however, the dispersion improves with the
forecast lead time. This behavior is completely in line with the increasing
coverage and high sharpness of the raw forecasts (see Fig. 3). Further, the
depicted rank histograms are rather symmetric, which is consistent with the
small overal MAE and RMSE and illustrates the lack of bias in the raw
ensemble. All post-processing approaches substantially improve calibration;
models based on TN predictive distributions result in ailmost flat PIT histograms,
whereas the histograms of TGEV and LN EMOS approaches indicate slight
biases. Kolmogorov—Smirnov (KS) test rejects the uniformity of the PIT for all
models; however, based on the values of the KS test statistic, one can provide a
clear ranking of the methods. PIT values of the TN MLP approach fit best the
uniform distribution, followed by the TN, TGEV, and LN EMOS models, which
order nicely reflects the shapes of the corresponding histograms of Fig. 5.
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Fig.5. PIT histograms of post-processed and verification rank histograms of raw
ensembl e forecasts of wind speed for the lead times 0-12h, 12-24h, 24-36h, and 36-48h.
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Based on the above results, one can conclude that models with TN
predictive distributions provide the best forecast skill, and the machine learning
based TN MLP approach outperforms the TN EMOS model. Hence, one might
be interested in the dissimilarities of the corresponding predictive distributions.
According to Fig. 6a, there is no fundamental difference in the location, and the
station-wise time series plots of this parameter also provide matching curves
(not shown). Thus, the linear model of the location given in Eq. (1) seems to be
optimal. A completely different picture can be observed in Fig. 6b, showing the
mean of the scales of the TN predictive distributions as function of lead time.
The diurna cycle for TN MLP is far less pronounced than for the TN EMOS,
and the corresponding time series (not shown) exhibit completely different
behavior, too. Hence, the superior performance of the TN MLP approach is due
to the more general modeling of the scale of the TN predictive distribution.

Fig. 6. Mean of the location (a) and scale (b) of the truncated normal predictive
distributions of TN EMOS and TN MLP models as functions of lead time.

5. Conclusions

We investigate post-processing of ensemble forecasts of 100m wind speed, as
this variable is of crucial interest in wind energy production. Three different
EMOS models based on truncated normal, log-normal, and truncated
generalized extreme value distributions are considered, and we also propose a
novel method where the probabilistic forecasts are obtained in the form of a
truncated normal predictive distribution with parameters linked to the ensemble
via a multilayer perceptron neural network. The forecasts skill of the competing
calibration methods is tested on the 11-member AROME-EPS hub height wind
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speed ensemble forecasts of the HMS for three wind farms in Hungary and
verified against observations provided by the wind farm operators. Only short-
term predictions are considered with forecast horizons ranging up to 48 h with a
temporal resolution of 15 minutes. Using the raw ensemble as reference, we
compare the mean CRPS of probabilistic, MAE of median, and RM SE of mean
forecasts, and the coverage of central prediction intervals corresponding to the
nomina 83.33% coverage. We aso study the shapes of the PIT histograms of
the calibrated forecasts for different lead times and compare with the
corresponding verification rank histograms of the raw ensemble. Based on our
case study we can conclude, that compared with the raw ensemble, post-
processing always improves the calibration of probabilistic and accuracy of
point forecasts. From the four competing methods, the novel machine learning
based TN MLP approach exhibits the best overall performance; moreover, in
contrast to the investigated EMOS models, it provides a single universal model
for several forecast horizons. The superior performance of the TN MLP model is
explained by its ability to represent more complex nonlinear relations between
the ensembl e forecasts and the parameters of the TN predictive distribution, and
our results are consistent with the findings of Rasp and Lerch (2018) and
Ghazvinian et al. (2021).

The present work highlights several directions of potential future research.
From the one hand, one might consider the machine learning approach to
parameter estimation in the case of other predictive distribution families such as
the LN and TGEV investigated here. From the other hand, a neural network
alows a very flexible choice of input features, providing a simple and
straightforward opportunity of involving predictions of other weather variables
in wind speed modeling.

Acknowledgments: Sandor Baran was supported by the National Research, Development and
Innovation Office under Grant No. NN125679. The authors thank Gabriella Sz&psz6 and Mihaly Szics
from the HM S for providing the AROME-EPS data.

References

Baran, S, Horanyi, A. and Nemoda, D., 2014: Comparison of the BMA and EMOS statistical methods
in calibrating temperature and wind speed forecast ensembles. |ddjaras 118, 217-241.

Baran, S and Lerch, S, 2015: Log-normal distribution based Ensemble Model Output Statistics
models for probabilistic wind speed forecasting. Q. J. R. Meteorol. Soc. 141, 2289-2299.
https://doi.org/10.1002/qj.2521

Baran, S. and Lerch, S, 2016: Mixture EMOS model for calibrating ensemble forecasts of wind speed.
Environmetrics 27, 116-130. https://doi.org/10.1002/env.2380

Baran, S and Lerch, S, 2018: Combining predictive distributions for statistical post-processing of
ensembleforecasts. Int. J. Forecast. 34, 477-496. https://doi.org/10.1016/)..ijforecast.2018.01.005

Baran, S, Szokol, P., and Szabo, M., 2021: Truncated generalized extreme value distribution based
EMOS model for calibration of wind speed ensemble forecasts. Environmetrics 32, €2678.
https://doi.org/10.1002/env.2678

622



Bauer, P., Thorpe, A. and Brunet, G., 2015: The quiet revolution of numerical weather prediction.
Nature 525, 47-55. https://doi.org/10.1038/nature14956

Bremnes, J.B., 2019: Constrained quantile regression splines for ensemble postprocessing. Mon.
Weather Rev. 147, 1769-1780. https://doi.org/10.1175/MWR-D-18-0420.1

Buizza, R., 2018: Ensemble forecasting and the need for calibration. In (eds. Vannitsem, S., Wilks, D.
S, Messner, J.W.), Statistical Postprocessing of Ensemble Forecasts, Elsevier, Amsterdam,
15-48. https://doi.org/10.1016/B978-0-12-812372-0.00002-9

Buizza, R., Houtekamer, P. L., Toth, Z., Pellerin, G., Wei, M., and Zhu, Y., 2005: A comparison of the
ECMWEF, MSC, and NCEP global ensemble prediction systems. Mon. Weather Rev. 133, 1076—
1097. https://doi.org/10.1175/MWR2905.1

Buizza, R, Petroliagis, T., Palmer, T., Barkmeijer, J., Hamrud, M., Hollingsworth, A., Smmons, A.,
and Wedi, N., 1998: Impact of model resolution and ensemble size on the performance of an
Ensemble Prediction System. Q. J. R. Meteorol. Soc. 124, 1935-1960.
https://doi.org/10.1002/qj.49712455008

Descamps, L., Labadie, C., Joly, A, Bazle, E., Arbogast, P., and Cébron, P., 2015: PEARP, the
M étéo-France short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 141, 1671-1685.
https://doi.org/10.1002/qj.2469

Friederichs, P. and Hense, A., 2007: Statistical downscaling of extreme precipitation events using
censored quantile regression. Mon. Weather Rev. 135, 2365-2378.
https://doi.org/10.1175/MWR3403.1

Ghazvinian, M., Zhang, Y., Seo, D-J., He, M., and Fernando, N., 2021: A novel hybrid artificial neural
network - parametric scheme for postprocessing medium-range precipitation forecasts. Adv.
Water Resour. 151, paper 103907. https://doi.org/10.1016/j.advwatres.2021.103907

Gneiting, T., Balabdaoui, F., and Raftery, A.E., 2007: Probabilistic forecasts, calibration and
sharpness. J. R. Sat. Soc. B 69, 243-268. https://doi.org/10.1111/j.1467-9868.2007.00587.x

Gneiting, T. and Raftery, A.E., 2005: Weather forecasting with ensemble methods. Science 310, 248—
249. https://doi.org/10.1126/science.1115255

Gneiting, T. and Raftery, A.E., 2007: Strictly proper scoring rules, prediction and estimation. J. Amer.
Statist. Assoc. 102, 359-378. https://doi.org/10.1198/016214506000001437

Gneiting, T., Raftery, AE., Westveld, AH., and Goldman, T., 2005: Calibrated probabilistic
forecasting using ensemble model output statistics and minimum CRPS estimation. Mon.
Weather Rev. 133, 1098-1118. https://doi.org/10.1175/MWR2904.1

Goodfellow, I, Bengio, Y., and Courville, A., 2016: Deep Learning. MIT Press, Cambridge.

Hemri, S, Scheuerer, M., Pappenberger, F., Bogner, K., and Haiden, T., 2014: Trends in the
predictive performance of raw ensemble weather forecasts. Geophys. Res. Lett. 41, 9197-9205.
https://doi.org/10.1002/2014GL 062472

Horéanyi, A., Kertész, S, Kullmann, L., and Radnéti, G., 2006: The ARPEGE/ALADIN mesoscale
numerical modeling system and its application at the Hungarian Meteorological Service.
Iddjérés 110, 203-227.

Javorné Radnécz, K., Varkonyi, A., and Szépszd, G., 2020: On the way towards the AROME
nowecasting system in Hungary. ALADIN-HIRLAM Newsletter 14, 65-69.

Lerch, S and Baran, S, 2017: Similarity-based semi-local estimation of EMOS models. J. R Sat.
Soc. C 66, 29-51. https://doi.org/10.1111/rssc.12153

Lerch, S and Thorarinsdottir, T.L., 2013: Comparison of non-homogeneous regression models for
probabilistic wind speed forecasting. Tellus A 65, paper 21206.
https://doi.org/10.3402/tellusa.v65i0.21206

Messner, J.W., Zeileis, A., Brocker, J., and Mayr, G.J., 2013: Probabilistic wind power forecasts with
an inverse power curve transformation and censored regression. Wind Energy 17, 1753-1766.
https://doi.org/10.1002/we.1666

Pinson, P. and Messner, J.W., 2018: Application of Postprocessing for Renewable Energy. In (eds.
Vannitsem, S, Wilks, D.S, Messner, J.W.) Statistical Postprocessing of Ensemble Forecasts,
Elsevier, 241-266. https://doi.org/10.1016/B978-0-12-812372-0.00009-1

Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M., 2005: Using Bayesian model
averaging to calibrate forecast ensembles. Mon. Weather Rev. 133, 1155-1174.
https://doi.org/10.1175/MWR2906.1

623



Rasp, S and Lerch, S (2018) Neural networks for postprocessing ensemble weather forecasts. Mon.
Weather Rev. 146, 3885-3900. https://doi.org/10.1175/MWR-D-18-0187.1

Taillardat, M. and Mestre, O., 2020: From research to applications — examples of operationa
ensemble post-processing in France using machine learning. Nonlin. Proc. Geophys. 27, 329—
347. https://doi.org/10.5194/npg-27-329-2020

Taylor, J., McSharry, P. and Buizza, R, 2009: Wind power density forecasting using ensemble
predictions and time seriesmodels. |EEE Trans. on Energy Convers. 24, 775-782.
https://doi.org/10.1109/TEC.2009.2025431

Thorarinsdottir, T. L. and Gneiting, T., 2010: Probabilistic forecasts of wind speed: Ensemble model
output statistics by using heteroscedastic censored regression. J. R. Stat. Soc. A 173, 371-388.
https://doi.org/10.1111/j.1467-985X.2009.00616.x

Vannitsem, S, Bremnes, J. B., Demaeyer, J., Evans, G. R,, Flowerdew, J., Henri, S, Lerch, S,
Roberts, N., Thels, S, Atencia, A., Ben Boualégue, Z., Bhend, J., Dabernig, M., De Cruz, L.,
Hieta, L., Mestre, O., Moret, L., Odak Plenkovi¢, I., Schmeits, M., Taillardat, M., Van den
Bergh, J., Van Schaeybroeck, B., Whan, K., and Ylhaisi, J., 2021: Statistical postprocessing for
weather forecasts — review, challenges and avenues in a big data world. Bull. Amer. Meteorol.
Soc. 102, E681-E699. https://doi.org/10.1175/BAM S-D-19-0308.1

Wilks, D.S, 2018: Univariate ensemble forecasting. In (eds. Vannitsem, S, Wilks, D.S, Messner, J.W.),
Statistical Postprocessing of Ensemble Forecasts, Elsevier, 49-89.
https://doi.org/10.1016/B978-0-12-812372-0.00003-0

Wilks, D.S, 2019: Statistical Methods in the Atmospheric Sciences. 4th ed. Elsevier, Amsterdam.

Wind Europe, 2021: Wind energy in Europe 2020. Statistics and the outlook for 2021-2025. Available
at: https://windeurope.org/intelligence-platf orm/product/wind-energy-in-europe-in-2020-trends-
and-statistics/ [Accessed on 17 August 2021]

World Wind Energy Association, 2021: Worldwide wind capacity reaches 744 gigawatts — an
unprecedented 93 gigawatts added in 2020. Available at: https://wwindea.org/worldwide-wind-
capacity-reaches-744-gigawatts/ [Accessed on 17 August 2021]

Yuen, R. A, Baran, S, Fraley, C., Gneiting, T., Lerch, S, Scheuerer, M., and Thorarinsdottir, T.L.,
2018: R package ensembleMOS, Version 0.8.2: Ensemble Model Output Statistics. Available
at: https://cran.r-project.org/package=ensembleM OS [Accessed on 17 August 2021]

624



DOI:10.28974/idojaras.2021.4.5

IDOJARAS
Quarterly Journal of the Hungarian Meteorological Service
Vol. 125, No. 4, October — December, 2021, pp. 625-646

Effect of the uncertainty in meteorology on air quality

model predictions

Zita Ferenczi*, Emese Homolya, Krisztina Lazar, and Anita T6th

Hungarian Meteorological Service
Kitaibel P. str. 1, H-1024 Budapest, Hungary

*Corresponding author's E-mail: ferencz.z@met.hu

(Manuscript received in final form September 30, 2021)

Abstract— An operational air quality forecasting model system has been developed and
provides daily forecasts of ozone, nitrogen oxides, and particulate matter for the area of
Hungary and three big cites of the country (Budapest, Miskolc, and Pécs). The core of the
model system isthe CHIMERE off-line chemical transport model. The AROME numerical
weather prediction model provides the gridded meteorological inputs for the chemical
model calculations. The horizontal resolution of the AROME meteorologica fields is
consistent with the CHIMERE horizontal resolution. The individua forecasted
concentrations for the following 2 days are displayed on a public website of the Hungarian
Meteorological Service. It is essentiad to have a quantitative understanding of the
uncertainty in model output arising from uncertainties in the input meteorological fields.
Themainaim of thisresearchisto probethe response of an air quality model toitsuncertain
meteorological inputs. Ensembles are one method to explore how uncertainty in
meteorology affects air pollution concentrations. During the past decades, meteorological
ensemble modeling has received extensive research and operational interest because of its
ability to better characterize forecast uncertainty. One such ensembl e forecast systemisthe
one of the AROME model, which has an 11-member ensemble where each member is
perturbed by initial and lateral boundary conditions. In this work we focus on wintertime
particulate matter concentrations, since this pollutant is extremely sensitive to near-surface
mixing processes. Selecting anumber of extreme air pollution situations we will show what
the impact of the meteorological uncertainty ison the simulated concentration fields using
AROME ensemble members.

Key-words: chemical transport model, uncertainty in meteorology, ensemble
technic, smog
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1. Introduction

Air pollution is a magjor environmental risk of our times, the reduction of which
poses a great challenge on professionals and decision-makers equally (Lelieveld,
2017). High concentrations of air pollutants may directly impair human health
(Landrigan, 2017), ecosystems (DeMarco et al., 2019), and the built environment
(Kucera and Fitz, 1995). Deposition processes may lead to harmful material
getting into the surrounding environmental media— into the vegetation, waters, or
soil —, where it can cause further damage (Moiseenko et al., 2018). Today a
widening range of attention is given to air quality, and we have more and more
advanced methodol ogies to assess the current status (EEA, 2019) and tendencies
of, and the expected changesin air pollution (Apte et al., 2017).

Although the most accurate information regarding the actual conditions in
the air is gained by direct measurements, a comprehensive assessment of air
quality today requires the use of specific air quality models (Rybarczyk and
Zalakiviciute, 2018). Based on a mathematical interpretation of physical and
chemical processestaking placeintheair, air quality models define arelationship
between the emitted pollutants and concentrations measured in the environment
(Baklanov et al., 2014).

Therefore, they provide a suitable way for the tracking of the dispersion,
chemical reactions, and deposition of air pollutants. Modern air quality models
take many kinds of environmental processes into account, and their evolving
complexity makes it possible for them to describe the real behavior of the natural
systems more and more profoundly. However, no matter how sophisticated a
model is, due to the high complexity of the natural systems and the feedbacks and
non-linearitiesthey involve, it isnot ableto describe all processesfully accurately,
it is bound to use approximation and parameterization in its methods. Simulations
of the models are therefore generally accompanied by a certain amount of
uncertainty, that is dependent on the calculation methods, the accuracy of the
input data, the geographical environment, the weather situation, and the resolution
aswell (Borrego et al., 2008). In the issue of the response of the air quality model
to varying input data, it is essential to evaluate the reaction of the model to the
changes in the emission or the meteorological data. The better understanding we
have regarding the behavior, characteristics, and limits of our models, the more
precisely we can define this uncertainty, which then provides us with the
opportunity to estimate the expectable accuracy of our calculations beforehand.

One of the most important input data of the chemical transport models comes
from the emission inventories, which latter are static databases for a specific year.
Furthermore, emissions are not possible to be measured in most cases. The
emission estimate is inevitably an inaccurate representation of the emission that
actually occurred. In addition to the simulations, emission data with fine temporal
(Menut et al., 2012) and spatial variations are expected. The uncertainty of the
emission data depends not only on the category of the emission source but also on
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the contributing emission sources and their quantity. The assessment of
uncertainty in the modeled forecasts in relation to the input uncertainty of the
emission dataset has been analyzed in many papers (Napelenok et al., 2011;
Holnicki and Nahorski, 2015).

The am of this research was to analyze the Hungarian air quality from
different aspects using up-to-date tools based on model simulations, where we
focused primarily on weather elements that mostly influence dispersion processes
in the air (Angevine, et al., 2014), their effects on concentrations evolving in the
environment, and the modeling of critical air quality situations rising in special
meteorological conditions. In our previous work (Homolya, 2021), a sensitivity
analysis was carried out using the CHIMERE chemical transport model in order
to examine, to what extent and how the key meteorological elements affect the
evolving concentrations in the course of the modeling process. For this study, the
values of the meteorological parameters were artificially modified. This
modification was not physically consistent, but at that time ensemble members
from AROME model were not available.

As a result of developments at the Hungarian Meteorological Service in
recent years, AROME EPS has become available for sensitivity analyses. Using
this new meteorological driver, physically consistent meteorological fields were
available for our examination. In this work, we focus on wintertime particul ate
matter concentrations, since this pollutant is extremely sensitive to near-surface
mixing processes. Three extreme air pollution situations were selected to examine
theimpact of the meteorol ogical uncertainty onthe simulated concentration fields.

2. Materials and methods
2.1. Models

For the examinations with the CHIMERE chemical transport model (Mailler et
al., 2017), adomain covering Hungary and extending to almost the wholeterritory
of the Carpathian Basin, with the borders of latitudes 45° and 50° and longitudes
14° and 25° (Fig. 1) was chosen to be the target area. The area bounded by the red
linein Fig. 1 showsthe calculation domain. The grid was defined the way that the
spatial resolution fitsthat of the emission inventory data of EMEP —0.1° —which
corresponds to roughly 10 km in the region of the Carpathian Basin. We have to
emphasize that the analyses presented in this work refer to the area bounded by
the blue line, which is smaller than the area bounded by the red line. The reason
for this choice was that some unbalances might occur close to the border of the
domain, arising from the boundary conditions.
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Fig. 1. The target domain for the analyses using the CHIMERE model and the location of
the monitoring sites.

The gridded emission inventory of EMEP for the year 2015 was used in the
simulations. The inventory datafor nitrogen-oxides, volatile organic compounds,
sulphur dioxide, ammonia, fine aerosol particles (PM2s), coarse aerosol particles
(PM1o—PM25), and carbon-monoxide were taken into account in a 0.1° spatial
resolution. The EMEP emissions inventory, which includes annual total data, has
to be converted to hourly data (Menut et al., 2012). During the time distribution
of the emission data, seasonal, weekly, and hourly factors are used.

Data of biogenic emission was cal culated by the MEGAN model (Guenther
et al., 2006), which is aglobal model with a base resolution of ~ 1 km.

Meteorological datawere provided by the AROME non-hydrostatic numerical
weather prediction model of the Hungarian Meteorological Service in a 1-hour
temporal and the 0.1° spatial resolution of the EMEP grid. For CHIMERE, datais
prepared by the built-in meteorological pre-processor, using the model’s own
diagnostic tool. One file in the database contains data for one single day.
AROME/HU (Szintai et al., 2015) runs 8 times per day up to 3648 hoursat 2.5 km
horizontal resolution using 60 vertical levels over adomain including the Carpathian
Basin. Theinitial conditions are prepared by optima interpolation on the surface and
local 3D-Var assmilating SYNOP, TEMP, AMDAR, GNSS ZTD measurements,
and Mode-S MRAR data from the Slovenian network. The hydrometeors and snow
evolve through the data assimilation (DA) cycle. Hourly lateral boundary conditions
are taken from the ECMWF HRES forecast in time lagged mode. AROME-EPS is
an 11-member forecast coupled to 18 UTC ECMWF ENS with a frequency of 3
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hours. The model runs at horizontal resolution of 2.5 km over adomain covering the
Carpathian Basin. The forecasts are initialized at 00 UTC and range up to 48 hours.

For our chemical transport model calculations, the AROME and AROME-EPS
run at 00 UTC and the model results of 00—24 UTC have been used. In our model
simulations, the deterministic model is considered as benchmark results because this
datais used in the operational air quality prediction. The originaly fine resolution
meteorological fields of the AROME and AROME-EPS model were interpolated to
the CHIMERE grid, which was defined by the EMEP gridded emission data.

Boundary and initial conditions are needed to get appropriate model results.
In our test cases, in the case of the first day, climatological data were used as
initial conditions, and then the previous simulation produced theinitial conditions
for the next simulation. The climatological set of boundary conditions has been
provided by the LMDz-INCA global model (Laboratoire de Météorologie
Dynamique General Circulation Model coupled with INCA: Interaction with
Chemistry and Aerosols) (Hourdin et al., 2006; Hauglustaine et al., 2004).
Information concerning land cover has been provided by the USGS database
(Loveland et al., 2000).

2.2. Measurements

Four monitoring stations with significantly different characteristics (population,
type of station) were selected for the detailed analysis of three cities, Budapest,
Miskolc, Pécs, and Farkasfa background monitoring station. The locations of the
monitoring stations can be seenin Fig. 1.

At several locations in Budapest (525.1 kn?, 1 756 000 inhabitants), the
monitoring of PM1o with fine temporal resolution started in 2007. Among the
monitoring sites, the Gilice tér urban background station (located in the
southeastern part of Budapest) was selected for our analysis, which is a standard
meteorological and air quality monitoring station providing PM 1o concentrations
and detailed meteorological observations with good data coverage. This location
is in the area of the Marczell Gyérgy Main Observatory of the Hungarian
Meteorological Service. The classification of this air quality monitoring site is
suburban with a significant influence from major sources from the greater
Budapest area.

Miskolc (236.7 km?, 159 000 inhabitants) is represented by the Blza tér
station. The classification of the siteis urban traffic with asignificant contribution
from traffic-related sources. Moreover, the whole city is located in an
unfavourable geographical location in the valley of Sgjo River surrounded by the
Bikk Mountains. Its special orography contributes to the development of long-
lasting (several days up to weeks) and severe air pollution episodes.

In Pécs (162.8 km?, 148 000 inhabitants), the selected station (Boszorkany
utca) islocated in asuburban environment. The hourly PM 1o datafor our complex
analysis have been available since 2009. One of the major industrial emission
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sources in this area is a coa-fueled power plant equipped with two modern
electrostatic precipitators. This development further decreasesthe PM 1o emissions
in the city. However, compared to Miskolc, the city of Pécs has more favorable
orography: the northern part of the city is bordered by the Mecsek Mountains, but
the southern side is open and flat.

Farkasfa background air pollution monitoring station is located in the western
part of Hungary, at the area of the Orség National Park. The station is surrounded by
forest and no essentia local source of air pollutants can be found nearby.

2.3. Episode situations

Three episode situations (January 6-13, 2020, January 17-22, 2020, and
November 9-14, 2020) were analyzed in depth, when PM 1o concentrations were
over the threshold limit in Hungary. The synoptic events were anticyclonal in
Central Europe during these periods (Fig.2). A cold pool is a specid
meteorological situation that is related to inversion in the upper atmosphere and
is coupled with low surface air temperatures. It most frequently evolves in areas
that are surrounded by chains of mountains. Events in anticyclones trigger the
development of cold pool asthey foster downward motionsin the air. By serving
asabarrier for mixing motions, inversion causesthe air to stabilize, and it hinders
the movement of the air mass out of the basin.

Fig. 2. Typica weather situations during the analyzed episode situations.
(source: www.met.hu)
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During the time period January 6-13, 2020, an anticyclone was observed in
Central Europe. The weather was quiet and uneventful in thefirst days of thistime
period, the sky was variably cloudy and the sun was quite often shining
everywhere in the country. The sky was weakly cloudy, at night but temporary
fog spots formed at dawn. In the middle of the period, the influence of a warm
front was observed, and warm, moist air cameinto Hungary. Subsequently, alayer
of clouds and fog formed during the nights in many places, which did not break
up or only broke up later during the day in the eastern and northeastern parts of
the country. In the rest of the country, the sky was clear due to the strengthening
NW wind, but the extension of the clear region decreased day by day.

Thefollowing period (January 17—-22, 2020) was heavily cloudy with misty,
foggy weather, both at nights and during the days. It isimportant to mention that
on January 19, aweak cold front arrived over the western counties and disbanded
there, but it did not cause a significant change in the weather. The change was
brought by another cold front, which arrived on January 22 from the north. It had
already passed over the country, leaving aweakly cloudy, sunny weather behind.

During the next period (November 9-14, 2020), an extensive anticyclone
was located again over Central Europe. It stretched from the Scandinavian
Peninsulato the Balkans. A classic cold pool developed over the target area. The
permanently cloudy, misty, foggy weather across the country was only interrupted
during the day in some places in the western parts of the country. The turning
point was a passing cold front that brought drier air.

3. Results and discussion

In this section, the effect of the meteorological parameters on the PMaio
concentration values calculated by an air quality model will be presented. In our
previouswork (Ferencz et al., 2020) we found, that the wind speed, the boundary
layer (PBL) height, and the precipitation affected the prediction of the PM1o
concentrationsthe most. In thiswork, theimpact of the meteorol ogical uncertainty
on the simulated concentration fields was determined using AROME numerical
weather prediction model’s ensemble members. The analysis focused on the
effects of the wind speed and the boundary layer height. In this work, the effect
of precipitation was not examined, because in these episode situations no
precipitation was reported. Three episode situations were selected for the analysis.
The characteristics of these episode situations were described in the previous
section.

3.1. Effect of the uncertainty in meteorology on air quality model predictions

We calculated the areal average differences between the various EPS and the
deterministic values of the meteorological parameters and the PM 1o concentration
over the domain covering Hungary. All the three episode situations have been
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analyzed with this method. The time series of these areal average differences and
also of the deterministic values are visualized in graphs.

First we conclude the results of the six-day period in November 2020.
(Fig. 3) On thelast two days, the deterministic PBL heights are much higher than
the EPS values in the middle of the day, that is why we see large negative
differences in the figure around noon. That means that the maximum PBL height
was underestimated by the EPS members. At the end of the day on November 13,
al the EPS areal averages are above the deterministic value. The maximum of the
positive areal average differences was +49 m and the largest negative deflection
was —93 m. Referring to the wind speed areal averages we can say, that the
differences stayed mostly between +/— 0.1 m/sin thefirst and between+/— 0.2 m/s
in the second half of the period. On November 13, during the first 8 hours, the
deterministic areal averages were lower than all the other EPS values. The
maximum value of the positive differences is +0.3 m/s and the maximum of the
negative differencesis—0.2 m/s. When the PBL height or wind speed differences
were large, al the EPS members were deflected in the same direction from the
deterministic value. The areal average PM 1o concentrations of the EPS members
differ mostly between +/— 1 pg/m?® from the deterministic values in the first part
of the period. With time, larger values appear, and the EPS members also differ
more from each other. The maximum deflection is +2.4 pg/mdin the positive
direction and in —3.3 pg/methe negative direction. In the morning (from 6 to 12)
of November 13, all the EPS values were lower than the deterministic
concentration. This can be explained by the behavior of the area average wind
speeds: on this day, during the first 8 hours, the deterministic wind speeds were
lower than any other EPS wind speeds. We were interested in how the daily
averages of the PBL height, wind speed, and PM 10 concentration changed on this
day over the country. We visualized the deterministic daily averages and the
differences between the EPS daily averages and deterministic values on maps.
The mapsrelating to the PM 10 concentration can be seenin Fig. 4. In thefirst map
we see, that the daily, deterministic PM 1o concentrations were above 40-50 ug/m?
in the eastern half of the country. In the other, difference-maps we see, that the
EPS values differed with more than +/-8 pg/m? in this eastern part of the modeled
region. Where the deterministic PM1o concentrations are relatively high, there the
EPS members show larger differences. Although there are extended areas
showing positive differences, we can ill have an impression, that over the
country the negative differences (green colours) dominate.
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A)

B)

Fig. 3. A) Boundary layer height, wind speed, and PM 1, differences between EPS members
and deterministic values. B) Deterministic boundary layer height, wind speed, and PM 1o
values (area averages, November 914, 2020).
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Fig. 4. Maps of deterministic daily average PM1o concentrations (first) and the difference
between the EPS and the deterministic daily averages (others). Positive differences arered,
negative differences are green. November13, 2020.

The next period is the January 6-13, 2020. (Fig.5) The PBL height
differences stayed mostly between +/—20 m, only on January 11 were larger
differences. On this day, the extent of the deterministic planetary boundary layer
was the largest. The maximum value of the positive differencesis +43 m, in the
negative direction the largest deflection was— 38 m. Thewind speed areal average
differences are mostly between +/-0.2 m/s. On January 11, the differences are
higher, there are some EPS members which differ nearly +/-0.3 m/s from the
deterministic value. The maximum of the positive wind speed differences was
+0.3 m/s, in the negative direction the maximum deflection was —0.3 m/s. The
differences in the PM 1o concentrations stayed mostly between +/—1 pg/m?, but in
some hours, the differences are near to the +/-2 pg/m? values. The maximum of
the positive differences was +1.9 ng/m® and of the negative differences was
—3.5 ng/mé. To conclude, we can say that the largest differences were on January
11. This can be due to a cold front reaching the country on this day. We can see,
that the deterministic wind speed and also the PBL height reached maximum
values on this day, and the EPS members showed high variability around these
maximum values. However, we could not detect especialy large spread in the
EPS PM 10 concentrations on this day.
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A)

B)

Fig. 5. A) Boundary layer height, wind speed, and PM 1, differences between EPS members
and deterministic values. B) Deterministic boundary layer height, wind speed, and PM1o
values (areal averages, January 6-13, 2020.).

Lastly we conclude the information about the period January 17-22, 2020.
(Fig. 6) Usually the PBL height deflections stayed between +/—20 m, but there are
EPS members which differ in alarger magnitude mostly near the end of the day.
The largest difference was +121 m, in the other direction —46 m was the highest
difference. Most of the wind speed differences are in the range of
+/-0.2 m/s. The largest, positive deflection was +0.6 m/s, the largest negative
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difference was—0.5 m/s. In case of the PM 10 concentrations, the variation between
the EPS members stayed large during the whole period apart from the first few
hours. The differences did not cross the 2 pg/m* value in the positive direction.
The largest positive difference was +1.5 ug/m?® and the largest negative was
—2.5 ug/m?® during the period. To conclude we can say, that most of the EPS
members which on average showed positive areal average differences in PBL
height and wind speed compared to the deterministic value, are the members,
which showed negative PM 1o differences. In the end of the period, the PBL height
and wind speed differences are large and show high variability, but we see that
the PM 10 concentration differences are smaller than on the days before.

A)

B)

Fig. 6. A) Boundary layer height, wind speed, and PM 1, differences between EPS members
and deterministic values. B) Deterministic boundary layer height, wind speed, and PM1o
values (areal averages, January 17-22, 2020).
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In terms of the areal averages, the variability in the meteorological data is
showingitself in the PM 10 concentration predictions. While the differences between
the meteorological inputs (deterministic and EPS) in case of the PBL height and
wind speed decrease in some hours during the examined periods, the implied PM1o
concentration differences are large circa from the second day of each period, and
the spread of the differences stays large until the end of the period. It isimportant
to mention that the differences in wind fields could impact the advection or
transport of pollutants from the sources. The differences which occur in the
trgjectories of the air parcels lead to changes in the concentration fields.

Finally, we examined the behavior of the EPS and deterministic PBL height,
wind speed, and PM 10 concentration valuesin four monitoring stations: Budapest,
Miskolc, Pécs, and Farkasfa. To sum up we can say that the PBL height
differences varied between +/—-200 m on the 4 monitoring stations, the wind speed
differences stayed mostly between +/-1 m/s, and the differences of the PM1o
concentrations fell usually in the +/-10 ug/md range. It is difficult to say that the
differencesin the gridcells of the stations got generally larger with time, because
there were some cases relating to all of the examined parameters, when larger
deflections from the deterministic values and larger variety within the values of
the different EPS members arose in the first part of the period. In case of the PBL
height, the differenceswere in general alwayslargein the hours around noon. The
various EPS members differed more in the maximum extension of the PBL from
the deterministic value. Generally, thereisasmaller variation in case of Farkasfa,
however, large differences from the deterministic values can occur here too. The
variation of the differences was smaller in Pécs than in the other urban stations.
From the examined parameters the wind speed differences showed the largest
variation during the three episode situations. Variations in the wind speed values
had a more significant effect on the variation in the PM1o concentrations. Small
differencesin wind fields over areas with high emission can have notable impact
on dilution and air parcel composition.

3.2. Effect of the EPS meteorology on the air quality forecast

The impact of EPS meteorology was investigated at three urban and one
background stations. Thethree city stations are Gilice tér in Budapest, Buzatér in
Miskolc, and Boszorkény utca in Pécs, and the background station is Farkasfa.
We chose points far apart. The type, geographical location, and emission impact
of the designated stations are also different, as shown in the previous chapter.

First, we examined the timelinesto seeif we could improve PM 1o forecasting
using EPS meteorology. AROME-EPS prediction is made with perturbed initial
and lateral boundary conditions. The set of forecasts, produced in this way,
presents several scenarios. From these we can also deduce the probability and
uncertainty of weather events. Ensemble predictions also have the advantage of
predicting extreme events, such as predicting air pollution peaks.
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In our case, we examined only three periods and four locations, but the standard
deviation of EPS members did not prove to be widespread enough to adequately
predict certain concentrations of pollutants. The application of EPS meteorology did
not significantly improve the prediction of PM1o (Fig. 7). The results of this
examination demonstrate that the success of air pollution forecast is affected by not
only the accurate meteorological parameters but the perfect emission pattern of
sources as well. The presented examples show that we have to improve or rethink
how to prepare hourly emission datafrom the yearly amount. Of course, the accurate
meteorological forecast isalso abasis of agood air quality forecast, but in our case,
the emission data is the weakness of our forecasting system.

PM1o concentrations (ug/m3) —MEAS —DET —EPS MEMBERS
Budapest Budapest Budapest
Miskolc Miskolc Miskolc
Pécs Pécs Pécs
Farkasfa Farkasfa Farkasfa

Fig. 7. Modeled and measured PM o concentrations at Budapest, Gilice tér, Miskolc, Buza
tér Pécs, Boszorkany utca, and Farkasfa stations (Source of measured data: Hungarian Air
Quality Network).
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Generaly, winter weather patterns provide more favorable conditions for
critical air quality situations coupled with high concentrations of PM 10 to occur than
summer weather patterns, which can basically be put down to the different emission
and meteorological characteristics. Next, we carried out a sengitivity analysis with
the aim to prove that the role of meteorology is significant in the formation of air
pollution in winter. It should be emphasized, that the performance of a model may
depend on the geographical domain, which makes the target area relevant in the
process of investigating the model characteristics. The sensitivity analysis proved to
be an efficient method to demonstrate the strong effects of local meteorological
parameters including the parameters principally responsible for the dispersion and
dilution processes of air pollutants, namely wind speed and planetary boundary layer
height on the evolving concentrations in the environment.

Time series were selected from the 3 episode situations for every 4
geographical points, when there waslight and strong wind speed and low and high
PBL height values (Tables1 and 2). For these time periods, the differences
between the twowind speed EPSs and PBL height EPSs extremes were
determined and than compared to the appropriate PM1g concentrations. By
extremes we mean which EPS gave the lowest values most often and which EPS
gave the highest values most often compared to the other EPS members. With this
analysis, the effects of wind speed and PBL height on PM 1o concentrations were
demonstrated. The used definition of light wind: < 2 m/s, strong wind: > 2 m/s,
low PBL height: <400 m, and high PBL height: > 400 m.

Table 1. Analyzed time periods for the effect of wind speed

Budapest Miskolc Pécs Farkasta
Liaht wind January 19-21, November 13-15, January 21-22, November 12-15,
9 2020 2020 2020 2020
Strong wind November 12-13, January 09-12, November 12-13, January 19-20,
’ 2020 2020 2020 2020

The effect of wind speed isto cause the accumulated air pollutantsto diffuse,
thereby leading to an improvement in air quality and vice versa, decreasing wind
speeds favor the accumulation of pollutants and induce a decline in air quality.
First the effect of light wind on the PM 10 concentration was analyzed (Fig. 8). The
first line of Figure 8 shows the two EPSs that gave the lowest wind speed value
most often and the highest wind speed value most often when low wind speed was
examined. The same graphs show the PM1o concentrations for these EPSs. The
second line of the figure shows the difference between the wind speeds and the
difference between the PM 10 concentrations of the aforementioned EPSs. Thus,
the change in PM 1o concentration caused by wind speed isillustrative. In the case
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of light wind, the PM1o concentration responds to small changes in wind speed
with a significant adjustment. In the case of the presented examples, a 1 m/s
increase in wind speed can result in a decrease in the PM 1o concentration up to
10 ug/m?. On the contrary, al m/sdecreasein wind speed can result in anincrease
in the PM1o concentration up to 5 ug/m3. Based on Fig. 8, it can be said, that in
the case of light wind, the prediction of PM1o concentration is very sensitive to
changesin wind speed.

Fig. 8. Effect of the wind speed change on the change in PM1o concentration at several
geographic locations (in case of light wind speed).

Then the effect of strong wind on the PM 1o concentration was also analyzed
(Fig. 9). Thefirst line of Fig. 9 shows the EPSs giving most often the highest and
most often the lowest wind speeds, aswell as PM 1o values for the same EPSs. The
second line shows the difference between the wind speeds and the difference
between the PMio concentrations. In this case, the response of the PMio
concentration change to the wind speed change is not as clear as in the case of
light wind speed change, but it can be noted that the effect is not negligible.
However, in some cases, a strong wind speed can aso increase PMaio
concentrations, as a result of an increased suspension of particles from ground
surfaces (Kukkonen et al., 2005).
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Fig. 9. Effect of the wind speed change on the change in PM1o concentration at several
geographic locations (in case of strong wind speed).

Results show that differences in the concentration fields due to the modified
meteorology (using EPS members) are more pronounced in the case of lower wind
speeds than they are in the case of higher wind speeds. We have to note that the
changes in PM1o concentrations were the most significant at the Budapest
location. It is well trackable in model simulations that by low wind speeds
pollutants start accumulating in the air rapidly, and it could be the explanation of
this effect.

Table 2. Analyzed time periods for the effect of PBL height

Budapest Miskolc Pécs Farkasfa
. January 21-23, January 17-19, November 13-15, November 13-15,
Low PBL height
2020 2020 2020 2020
High PBL November 13-15, January 21-23, January 19-21, November 11-13,
height 2020 2020 2020 2020
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Pollutant, especially PM concentrations in the environment are largely
affected by the boundary layer height aswell (Du et al., 2013). Results show that
an increasing boundary layer height is coupled with the decrease of pollutant
concentrations and, on the other hand, a decrease in the planetary boundary layer
height leads to a definite increase in concentrations. However, this general
conclusion can be modified by the very extreme meteorological situation during
cold pools, when the predicted planetary boundary layer height is extremely low
(< 400 m). First, the effect of low PBL height was analyzed on the PMio
concentration (Fig. 10). The expected effect that the increasing boundary layer
height can cause decreasing PM 10 concentration and vice versais not clear in all
cases in the case of low PBL height. A low boundary layer would constrain
pollutants to the low surface layer and restrict the diffusion and dispersion of air
pollutants. Our examination showed that a small change in the boundary layer
height has a small effect on PM1 concentration. In our case studies, the negative
connection was the strongest in the case of Pécs and the weakest in the case of
Farkasfa. Thefirst row of Fig. 10 shows the EPSswith most often the highest and
most often the lowest PBL heights and the associated PM 1o concentrations. The
second line shows the difference between the PBL heights and the difference
between the PM 10 concentrations.

Fig. 10. Effect of the PBL height change on the change in PM1o concentration at several
geographic locations (in case of low PBL height).
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Asanext step, the effect of higher PBL height was also analyzed on the PM 10
concentration (Fig. 11). Inverse relationship between boundary layer depth and
PM 10 concentration was found. This relationship is stronger when the PBL height
ishigher than 400 m, becausein this situation the decrease or increase of thislayer
could be more significant. Thefirst row of Fig. 11 shows the EPSs with the most
common highest and the most common lowest PBL heights, in the case of high
PBL heights, and the corresponding PM 10 concentrations. The second line of the
figure shows the difference between these values.

Fig. 11. Effect of the PBL height change on the change in PM1, concentration at several
geographic locations (in case of high PBL height)

According to simulation results of the CHIMERE model, it is apparent that
the response of the model is stronger for the decrease than for the increase of the
boundary layer height, which means that the accumulation of air pollutants is
more intense with the diminishing boundary layer than the dilution of pollutants
is when the boundary layer height increases. We also have to note that the
numerical weather prediction models determine the PBL height using different
parameterization schemes, this fact can aso affect the results of this type of
analysis. The AROME numerical weather prediction model calculates the PBL
height using the TKE scheme (Szintai et al., 2015).
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In this section, the effect of meteorological parameters on the PMio
concentration was analyzed separately. The effect of different meteorological
situations (represented by a given EPS member in this analysis) on the calculated
PM1o concentration can be analyzed a more complex way, when the effect of
different parameters are taken into account simultaneously. This type of analysis
isour next plan.

4. Conclusion

Results confirm that the chemical transport model is suitable for the detailed
examination of the relationship between air pollutant concentrations and
meteorological elements. Through model simulations, we demonstrated that a
local accumulation of air pollutants significantly depends on the current
meteorological conditions. A modification of the values of key meteorological
variables that dominate in the dispersion processes — such as precipitation, wind
speed, and planetary boundary layer height — brings about a consistent change in
air concentrations.

The strengthening of wind speed causes the accumulated air pollutants to
diffuse, thereby leading to an improvement in air quality and vice versa,
decreasing wind speeds favor the accumulation of pollutants and induce a decline
in air quality. Our studies showed that the differences in the concentration fields
due to the modified meteorology are more pronounced in the case of lower wind
speeds than they are in the case of higher wind speeds. Boundary layer
characteristics play also a crucial role in the dilution of air pollutants near the
surface. Increasing boundary layer height is coupled with the decrease of pollutant
concentrations and, on the other hand, a decrease in the planetary boundary layer
height leads to a definite increase in concentrations. Our studies showed that the
differences in the concentration fields due to the modified meteorology are more
pronounced in the case of higher boundary layer than they arein the case of lower
boundary layer height.

Concerning the examined westher elements, the general conclusion can be
deducted that they fundamentally influence the formation of air pollution and affect
air concentrations significantly. The wind speed, being in connection with the
intensity of mixing in the air and the height of the planetary boundary layer are both
inversely proportiona to the amount of pollutants in the air. Weather situations
coupled with low wind speed, low boundary layer height, and without precipitation
favor the accumulation of air pollutants the most. On the other hand, stronger winds
and an increasein the boundary layer height cause concentrationsto decrease. Based
on the results, the role of local meteorology is therefore significant in the formation
of air pollution. The more knowledge we have about the relationship between local
weather and the evolving air concentrations, the more accurate assessments we are
able to accomplish regarding both the current air quality and air quality forecasts.



Therefore, a detailed exploration of these relations is of fundamental significance.
Naturally, the geographical environment, that makes the individua local conditions
diverse, is aso an important factor in this issue. The Carpathian Basin is unique in
this respect with strong characteristics as a basin, but within its boundaries very
different local conditions may exist in connection with the diverse topography, that
is necessary to be taken into account.

The investigation of similar cases is essential in order to explore wesather
situationsinwhich we can only reservedly rely ontheresults of air quality models.
Being aware of the limitations of our models and the situations in which their
calculations might become imprecise, and knowing what to expect concerning the
differences between the real situation and the model results — whether the model
over- or underestimates the real concentrations—make it possible for usto assign
an uncertainty to the results and also to make a more accurate assessment of the
current situation by taking the expectable inaccuracies into account, based on

which we can introduce more adequate measures.
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Abstract— This study is focusing on the past and, in particular, the present of the
ALADIN-Climate model used at the Hungarian Meteorological Service. The currently
applied model version is 5.2 (HMS-ALADINS2). In the recent experiments, the CNRM-
CM5 globa model outputs were downscaled in two steps to 10 km horizontal resolution
over Central and Southeast Europe using RCP4.5 and RCP8.5 scenarios. Temperature and
precipitation projections are analyzed for 2021-2050 and 2071-2100 with respect to the
reference period of 1971-2000 with focus on Hungary. The results are evaluated in
comparison to 26 simulations selected from the 12 km horizontal resolution Euro-
CORDEX projection ensemble (including two additional versions of ALADIN-Climate:
CNRM-ALADIN53 and CNRM-ALADING3) to get more information about the projection
uncertainties over Hungary and to assess the representativeness of HMS-ALADIN52.

The HMS-ALADINS2 simulations project a clear warming trend in Central and
Southeast Europe, which is more remarkable in case of greater radiative forcing change
(RCP8.5). From the 2040s, the Euro-CORDEX simulations start to diverge using different
scenarios. The total range of the annual change over Hungary is 1.3-3.3 °C with RCP4.5
and 3.2-5.7 °C with RCP8.5 by the end of the 21st century. HMS-ALADINS52 results are
approximately near to the median: 2.9 °C with RCP4.5 and 4 °C with RCP8.5. CNRM-
ALADIN53 shows generally similar results to HMS-ALADINS2, but simulations with
CNRM-ALADING3 indicate higher changes compared to both. In terms of seasonal mean
precipitation change, the HMS-ALADIN52 simulations assume an increase between 9%
and 33% (less in spring, more in autumn) over Hungary in both periods and with both
scenarios. Most of the selected Euro-CORDEX simulations show a precipitation increase,
apart from summer, when growth and reduction can be equally expected in 20212050, and
the drying tendency continues towards the end of the century. Increase projected by HMS-
ALADIN52 is mostly confirmed by CNRM-ALADINS3, while CNRM-ALADING3

647



predicts precipitation decrease in summer. Precipitation results do not show a significantly
striking difference between the scenarios, likely due to the fact that internal variability and
model uncertainty are morerelevant sources of uncertainty in precipitation projections over
our region.

Key-words: regional climate modeling, Hungary, projection, temperature, precipitation,
ALADIN, Euro-CORDEX, ensemble

1. Introduction

During the early 2000s, it was decided at the Hungarian Meteorological Service
(HMYS) to start working in the field of regional climate modeling in order to
provide a firm basis for climate change adaptation in Hungary. A pragmatic
approach was taken in the search of regional climate models (RCM) to be used,
and the ALADIN model was selected in addition to the REMO model (Szépszo
and Horanyi, 2008). The ALADIN limited area numerical weather prediction
(NWP) model (Termonia et al., 2018) has been developed through an
international cooperation, and for now the ALADIN model family is the most
widely used limited area model in Europe (it has been used also in operational
practice of HMS since the 1990s). Its two specific versions were considered in
these early days. The first one was basically the short-range NWP version of the
model (Farda et al., 2010), which included only minor changes for the climate
version. The second one was a dedicated model version called ALADIN-Climate
(Radu et al., 2008), which was built by merging the physical parameterization
package of the ARPEGE-Climat global climate model (Déqué et al., 1994) and
the dynamics of the ALADIN model. That version was more tailored for climate
use and was adapted at the Hungarian Meteorological Service. This model has
been used for various climate experiments including some shorter (few years)
experimentation to establish the most appropriate model version, domain,
horizontal resolution, and the spin-up time.

At HMS, the first longer experiments were performed by reanalysis lateral
boundary conditions (LBCs) and then using global climate model (ARPEGE-
Climat) LBCsin order to understand the behavior of the model for the past. While
the ERA-40 (Uppala et al., 2005) driven experiment was achieved at 25 km
resolution over Central Europe, the ARPEGE-driven simulation covered only the
Carpathian Basin with 10 km resolution. The vaidation demonstrated that the
domain size affects the results. using the smaller integration area led to an
overestimation in summer precipitation and an underestimation in temperature
(Csima and Horanyi, 2008).

Thefirst climate change run with ALADIN-Climate 4.5 was carried out in the
framework of the CECILIA EU FP6 project (Halenka, 2007) between 2006 and
2009. The experiment was accomplished for two futuretime slices (2021-2050 and
2071-2100) using the medium A1B SRES scenario (Nakicenovic et al., 2000) to
provide RCM outputs for assessment of the climate change effects on extreme
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events, air pollution, agriculture, water- and energy management in Central and
Eastern Europe. The ALADIN-Climate results showed significant temperature
increase and strong summer and lower winter reduction in precipitation over the
Carpathian Basin for the 21st century (however, the latter outcome was neither
confirmed by the results of the REMO model applied also at the Hungarian
Meteorological Service nor by the available results of other European RCMs;
Krizselyi et al., 2011; Belda et al., 2015; Christensen et al., 20074).

In the early 2010s, outputs of four locally run regional climate models were
available in Hungary (Krizselyi et al., 2011). A National Adaptation Geo-
information System (NAGIS; Kajner et al., 2017) was created in 2013 to support
climate adaptation and related decision making in Hungary with coordinated
impact studies. Their model basis for the future climate projections are the
ALADIN-Climate and RegCM (Torma et al., 2008) RCMs. The climate
information available in NAGIS is utilized in vulnerability assessments in many
sectors, e.g., tourism, hydrology, human health (Kovacs et al., 2015; Bede-
Fazekas et al., 2017; Homolya et al., 2017; Lepesi et al., 2017).

Parallel to the vulnerability assessments, HMS aimed to update the climate
simulation base of NAGISin aside-project of NAGIS and later in the EU-funded
KlimAdat project from 2016. A new version (5.2) of the ALADIN-Climate model
was applied over a domain covering Central and Eastern Europe with 10 km
resolution. For the evaluation and control runs, ERA-Interim reanalysis (Dee et
al., 2011) and the 5th version of ARPEGE-Climat, which is the atmospheric part
of the CNRM-CM5 general global circulation model (Voldoire et al., 2013)
provided the lateral boundary conditions, respectively. The magnitude of the
temperature underestimation and the summer precipitation overestimation over
Hungary reduced in the new experiments (llly et al., 2015). New, transient climate
change simulations are also accomplished using the RCP (Representative
Concentration Pathways) anthropogenic scenario family defined for the Fifth
Assessment Report of the IPCC (Moss et al., 2010).

In order to properly describe future climate change, uncertainties of climate
projections need to be taken into account. Therefore, other model results have
been considered besides the ALADIN-Climate simulations. The World Climate
Research Program established the CORDEX (Coordinated Regiona Downscaling
Experiment, http://cordex.org; Giorgi et al., 2009) collaboration which provides
an internationally coordinated framework to improve regional climate scenarios
over every continent. Simulations are performed mostly at 50 km (EUR-44)
resolution over the predefined continent-sized domains until the end of the 21st
century, but in the framework of Euro-CORDEX initiative (http://www.euro-
cordex.net/; Jacob et al., 2014), experiments over Europe are performed also at a
finer 12.5 km (EUR-11) resolution. The regional simulations downscale the
CMIP5 global climate projections (Taylor et al., 2012) and take into account the
RCP scenarios.
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The aim of this study is to present the projection results of the ALADIN-
Climate regional climate model for Hungary, and to examine how these
simulations relate to a Euro-CORDEX EUR-11 (Jacob et al., 2014) model
ensemble. The latter question is important for practical reasons as well, since
future climate change uncertainties can be best quantified with multi-model and
multi-scenario ensembles, and in Hungary, the computing capacities are limited
to run several simulations with different models. After the historical overview, in
Section 2, first the current model version adapted at HM S and the selected Euro-
CORDEX ensemble are introduced, emphasizing the included ALADIN-Climate
5.3 and 6.3 RCM versions. Then, experiments achieved with ALADIN-Climate
5.2, the analyzed Euro-CORDEX simulations, and the evaluation methods are
also presented. Section 3 is dedicated to assess the temperature and precipitation
projection results of the latest 10 km simulations of ALADIN-Climate 5.2,
prepared with two different scenarios and the comparison to the Euro-CORDEX
ensemble. Finally, asummary isgiven in Section 4.

2. Data and methodology
2.1. The studied ALADIN-Climate model versions

ALADIN-Climate is a hydrostatic, spectra regiona climate model, which
5.2 version (Colin et al., 2010; hereinafter HMS-ALADINS2) is currently applied
at the Hungarian Meteorological Service. The dynamic core of thismodel version
is based on the cycle 32 of the ALADIN numerical weather prediction model,
while the physical parameterization package is originated from the 5th version of
the ARPEGE-Climat global climate model. The horizontal grid type of the model
is a Lambert conformal conic projection, while the model applies the hybrid
(terrain-following near the surface, that continuously turnsinto pressure levels at
higher altitudes) coordinate system. The prognostic variables are the horizontal
components of wind speed, temperature, specific humidity on model levels, and
the surface air pressure. A combination of semi-implicit and semi-Lagrangian
schemes are applied to determine the temporal evolution of the prognostic
variables, which allows the use of a longer integration time step. The lateral
boundary conditions and the RCM fields are smoothed to each other in the
relaxation zone (an 8-gridpoint bound around the RCM central domain; Davies,
1976).

The main physical parameterization schemes are the followings. longwave
radiation is described by the RRTM scheme (Rapid Radiation Transfer Model;
Mlawer et al., 1997) which takes into account the emission and absorption of
longwave radiation and the effects of particular atmospheric gases and aerosols.
The calculation of the shortwave radiation flux is done by the Fouquart and
Bonnel (1980) scheme, which describes the reflection, scattering, and absorption
of shortwave radiation, and also considers the absorption of each atmospheric
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trace gas and the modifying effect of cloud cover. Ricard and Royer’s (1993)
scheme is used for large scale cloudiness and Smith’s scheme (1990) for large
scale precipitation. The parameterization of convection is based on the scheme of
Bougeault (1985). The land surface processes are described by the SURFEX land
surface model (Masson et al., 2013) that applies different schemes over the natural
land, inland water, sea, and town surfaces. In the present model configuration, the
ISBA scheme (Interaction of Soil Biosphere Atmosphere; Noilhan and Planton,
1989) was applied over the natural land surfaces, urban surfaces were described
as rocks, while over water surfaces the simple Charnock formula (Charnock,
1955) gives surface fluxes using prescribed surface temperature.

The impact of human activity is considered through the annual global mean
evolution of the atmospheric concentrations of greenhouse gases (COz, CH4, N2O,
CFC-11, CFC-12) and certain types of aerosols (black coal, organic aerosol,
sulphate, sea salt, dust). Aerosols are described in monthly distributions for 10-
year periodsin the historical period (Tegen et al., 1997), aswell asin the scenario
periods (Szopa et al., 2013).

ALADIN-Climate version 5.3 and 6.3 (also known as CNRM-ALADINS3;
Colin et al., 2010 and CNRM-ALADING63; Nabat et al., 2020) have been
developed and applied for regional climate model simulations, e.g., in the Euro-
CORDEX framework by the Centre National de Recherches Météorologiques
(CNRM), the research department of the French national weather service, M étéo-
France. CNRM-ALADINS3 is very close to the version 5.2 used at HM S and it
was described above. The main difference is that CNRM-ALADIN53 does not
use the SURFEX land surface model (but asimilar version of ISBA for the natural
surfaces). For completeness, note that the HMS-ALADINS2 version is relatively
different from the ALADINS version used by CNRM in Med-CORDEX
(Tramblay et al., 2013) and the MENA domain (Driouech et al., 2020), but is
identical to the CNRM version used for CORDEX North America (Lucas-Picher
et al., 2013).

On the contrary, CNRM-ALADING3 isavery different version asmorethan
10 years of model development occurred between version 5 and version 6 of
ALADIN. It isdescribed in detail in Nabat et al. (2020) and the main differences
between ALADINS and ALADING are summarized in lvusic et al. (2021, inrev.)
CNRM-ALADIN53 and CNRM-ALADING3 are part of the latest 12 km-
resolution Euro-CORDEX ensemble that has been assessed in Vautard et al.
(2021) and Coppola et al. (2021).

2.2. Experiments with HMS-ALADIN52

Two simulations (Table 1) have been created for the future with ALADINS2 at
the Hungarian Meteorological Service using the high-emission RCP8.5 and the
intermediate emission RCP4.5 scenarios for greenhouse gases. The numbers in
the scenario names indicate the expected change in radiative forcing (i.e.,
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8.5 W/m?2 and 4.5 W/m?, respectively) by the end of the 21st century compared to
the pre-industrial level. The associated aerosol distributions were determined
from simulations with global air chemistry (INCA Chemistry model) and general
circulation models (Szopa et al., 2013). The lateral boundary conditions have
1.4 degree (approximately 150 km on our latitudes) horizontal resolution and are
provided by the CNRM-CM5 genera globa circulation model, that was
dynamically downscaled to 50 km resolution with HMS-ALADIN52 to the Euro-
CORDEX domain. CNRM-CM5 includes the ARPEGE-Climat atmospheric
model, the NEMO ocean model (Madec, 2008), the ISBA land surface scheme
(Noilhan and Planton, 1989), and the GELATO sea ice model (Salas y Melia,
2002) coupled through the OASIS system (Valcke, 2006). The 50 km horizontal
resolution fields are then downscaled to 10 km (0.09 degree) on adomain covering
Central and Southeast Europe (Fig. 1, left). An error has been recently reported
concerning the CNRM-CM5 GCM files that were used as atmospheric lateral
boundary conditions for the ALADIN52 and ALADINS3 runs (www.umr-
cnrm.fr/cmip5/spip.php?article24& lang=en), but this likely has no significant
effect on the long-term climate change signal. Sea surface temperature (SST) is
derived from the CNRM-CM5 model, which is used directly by the 50 km
resolution HMS-ALADIN52 simulations. The SST forcing of the 10 km HMS-
ALADINS52 is more complex, which takes into account the 50 km HMS-
ALADINS2 results and the use of SURFEX (sea-surface ratio). In our HMS-
ALADIN52 experiments, there is no ocean/sea coupling.

Table 1. Features of the HMS-ALADIN52 simulations

HMS-ALADIN52

50 km resolution HMS-ALADIN52

Lateral boundary conditions driven by CNRM-CM5

Projection Lambert
Horizontal resolution 10 km
Number of vertical levels 31
Time interval 1950-2100
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Fig 1. The integration domains of the 10 km horizontal resolution HMS-ALADINS52 regiona
climate model (left) and the 12.5 km horizontal resolution Euro-CORDEX regional climate
models (right).

2.3. The selected Euro-CORDEX simulations

In addition to the assessment of HMS-ALADINS52 results, the projections of
several Euro-CORDEX simulations are jointly evaluated, assuming that all of
them are equally possible realizations of climate change. A multi-model and
multi-scenario ensemble consisting of 26 simulations from the 12.5 km (0.11° x
0.11°) Euro-CORDEX RCM set is selected to quantify the uncertainties
originated from the GCM-RCM differences and the scenario choice. Eight RCMs
driven by five GCMs (13 model combinations) using the RCP4.5 and RCP8.5
scenarios have been applied in this study (Table 2). The simulations (except two
with CNRM-ALADING3) were chosen several years ago based on the following
criteria applied for the assessed variables: 1) the smulations should include the
study period, 2) the historical and the two RCP scenario simulations should be
available, 3) the simulations should be achieved on 0.44° and 0.11° resolution as
well. The CNRM-ALADING3 simulations were added afterwards in order to
further explore the differences amongst the ALADIN versions. More details on
the individual RCMs can be found in the reference articles. The domain of the
simulationsis presented in the right panel of Fig. 1.
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Table 2. The ensemble selected from Euro-CORDEX with 13 model combinations driven
by RCP4.5 and RCP8.5 scenarios (26 simulation members). The two ALADIN versions
anayzed in detail are indicated with bold.

RCM Driving GCM Reference
ALADIN53 CNRM-CM5 Colin et al. (2010)
ALADING3 CNRM-CM5 Nabat et al. (2020)
CCLM4-8-17 MPI-ESM-LR Rockel et al. (2008)
HIRHAM5 EC-EARTH Christensen et al. (2006)
EC-EARTH
RACMO22E '\gg'igaafd vanetal.
HadGEM2-ES (2012
CNRM-CM5
HadGEM2-ES
RCA4 MPI-ESM-LR Kupiainen et al. (2011)
IPSL-CM5A-MR
EC-EARTH
REM 02009 MPI-ESM-LR  Jacob et al. (2012)
WRF331F IPSL-CM5A-MR  Skamarock et al. (2008)

2.4. Evaluation method

The assessment concentrates on temperature and precipitation. First, the
projections of HMS-ALADINS52 were thoroughly evaluated both over the whole
model domain and Hungary. The annual and seasonal mean changes have been
quantified in two future periods. 2021-2050 for the near future and 2071-2100
for the far future relative to the 1971-2000 model reference period. The Welch-
test for both temperature and precipitation was performed to identify significant

changes at grid points over Hungary.

In addition, the model results have been corrected by the delta method
(Maraun, 2016; Maraun and Widmann, 2018) to filter out the systematic error of
HMS-ALADIN52 (assuming that the past and future bias is unchanged),
considering the CARPATCLIM-HU (Bihari et al., 2017) as areference database.
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CARPATCLIM-HU is a daily gridded observation database on 0.1 degree
horizontal resolution covering Hungary. The dataset was generated by the MASH
homogenization (Szentimrey, 2008; 2014) and the MISH interpolation
(Szentimrey and Bihari, 2007; 2014) methods specialy developed for
meteorological purposes, and it incorporates station measurements from Hungary
and the neighboring countries For correction of the RCM results, the ssimulated
monthly mean changesfor each year in the projection time periods were combined
with the observed 30-year monthly mean of the reference period (originated from
CARPATCLIM-HU) in an additive way (according to Eq.(1)) for temperature and
in amultiplicative way (according to Eq.(2)) for precipitation:

X(t) ’sim,f = Xobs,p + (X(t)sim,f - Xsim,p) J (1)
’ v X()sim,

X gy = Ropay X (Fo22t) @
sim,p

where X (t)'sim ¢ 1S the bias-corrected future monthly mean value for the given
year, X, bs,p 1S the average of the observations for the reference period, X (¢) sim ¢
is the simulated raw future value for a given year, and Xy, ,, is the average of
simulated past values for the reference period. The yearly monthly means
averaged over Hungary in the past and in the two future 30-year periods are shown
in box-whisker diagrams (also known as boxplot; Williamson et al., 1989), in
order to investigate how the range and distribution of monthly means change
between the different 30-year periods. Five statistical attributes are visualized in
a box-whisker diagram: the median, the lower and upper quartiles (i.e., the 25th
and 75th percentiles), and the minimum and maximum values.

Finally, the HMS-ALADINS52 results have been compared to the Euro-
CORDEX experiments to examine how HMS-ALADIN5S2 fits into the
uncertainty range of a larger ensemble, thus providing information on the
representativeness of HMS-ALADINS2 in terms of temperature and precipitation
changes over Hungary. Thisisan important step asthere are limited opportunities
to adapt and run several regiona climate models in Hungary. The projected
evolution of changes was assessed by using moving averages over 30-year time
windows with one-year steps (e.g., 2021-2050, 20222051, etc.) throughout the
21st century. Moreover, the mean temperature and precipitation changes for all
models are presented together on scatter plots. The far future period in the case of
Euro-CORDEX ensemble had to be dlightly shifted to 2070-2099 instead of
2071-2100, because for some RCM simulations the year 2100 was missing due
to the lack of GCM data. Nevertheless, shifting the 30-year period by one year
does not affect the climate change signal significantly.
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3. Results and discussion
3.1. In-house simulations with HMS-ALADIN52

Temperature

A gradual warming can be detected towards the end of the century, which ismore
intense with the RCP8.5 than with the RCP4.5 scenario and in winter compared
to summer (Fig. 2). Considering first the spatial pattern of temperature change on
the model domain, the warming is increasing from southwest to northeast in
summer. This also suggests that the continental parts are expected to experience
higher temperature increases than the western, ocean-influenced parts. The
temperature rise in the Ukrainian area (eastern part of the domain) could reach
5°C by the end of the century with the RCP8.5 scenario and 3-3.5 °C with
RCP4.5. The smallest temperature rise (0.5-1 °C) can occur in 2021-2050 with
RCP4.5 over the centra part of Germany and the northwestern part of
Switzerland. Moreover, the Alps are emerging with higher temperature increase
(reaching around 7 °C for the RCP8.5 scenario) fromits surrounding areas aswell.
In general, the spatia differences are larger with both scenarios at the end of the
century in contrast to the middle of the century. In winter, the Alpine chains do
not appear as prominent as in summer, but the largest temperature increase is
expected also over Ukraine, and several smaller regions (e.g., Po Plain, South
Germany, Czech Republic) may face remarkable warming too, reaching 7-8 °C
by 2071-2100 with RCP8.5 and 5-6 °C with RCPA4.5.

The mean temperature increase for the area of Hungary is summarized in
Table 3. Annualy 1.3 °C in 2021-2050, 2.9 °C in 2071-2100 with RCP4.5 is
obtained, respectively, which could reach 4 °C by the end of the century with
RCP8.5. The largest seasonal temperature increase occurs in winter: 3.6 °C and
4.8 °C by the end of the century with RCP4.5 and RCP8.5, respectively. A slight
zonality in the warming can be noticed in winter with all scenarios and for all
periods with higher values over the northern and northeastern parts of the country,
especially over the North Hungarian Mountains (Fig. 2). The second most
warming season is summer: 2.9 °C and 4.4 °C by the end of the century with
RCP4.5 and RCP8.5, respectively, and the warming in this season is amost
homogeneous in terms of the spatial pattern. The change is mostly significant at
both annual and seasonal scales at al grid points (not shown).

Monthly mean temperature values averaged over Hungary are analyzed to
gain information on the variability within the selected 30-year periods. The
warming in February, August, September, and December using the RCP8.5
scenario (red boxesin Fig. 3) isso large, that the monthly val ues between the 25th
and 75th percentiles (which are in the boxes) do not even overlap in the two
30-year periods. The highest value among the mean temperatures of July —which
month was the warmest in the reference period — was 23.2 °C, this can exceed
29 °C by the end of the century. Based on the percentiles, for both future periods
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and both scenarios, the mean temperaturein July may become much morevariable
compared to the reference period: the wider boxesindicate that the range of values
between the 25th and 75th percentiles may become extended. August can compete
with July in terms of the hottest month in the year on average (max. 30.1 °C) in
2071-2100 with the higher emission scenario. Mean temperature values not
exceeding O Celsius degree are till possible to occur in the winter months in
2021-2050 with both scenarios and in 2071-2100 with RCP4.5, but the 75% of
the monthly means will reach 0 degree considering all the three months.

The key difference of temperature increase with RCP4.5 and RCP8.5
scenarios, that is especialy clear in the far future, reveals the strong correlation
between the radiative forcing and the temperature change.
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Fig. 2. Summer (JJA) and winter (DJF) temperature changes (°C) projected for 2021-2050 and
2071-2100 over the domain of HMS-ALADINS2 in case of RCP4.5 and RCP8.5 scenarios
(reference period: 1971-2000).
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Table 3. Annual and seasonal mean temperature changes (°C) in Hungary for 2021-2050
and 2071-2100 compared to 1971-2000, based on the results of HMS-ALADIN52 model
simulations with RCP4.5 and RCP8.5 scenarios, below them the corresponding minimum
and maximum changes are in parentheses based on 26 Euro-CORDEX (EC) ensemble
simulations.

Annual MAM JIA SON DJF
13 1.1 14 0.8 18
RCPAS  09-221 [05-24] [10-21] [05-20] [0.6—25]
2021-2050
17 13 17 15 2.1
RCP8S  l08-24] [09-22] [08-25 [08-27] [02-2§]
2.9 27 2.9 23 36
20712100 REPAS 113733 [11-31 [15-33] [11-35 [L0-3.9
(EC: 2070-
2099) 40 34 - > e
RCPES  132-571 [26-50] [32-58 [27-59 [34-6.1]
30 1 .
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Fig. 3. Box-whisker diagram of the bias-corrected monthly mean temperature values (°C) area-
averaged over Hungary for every year of 20212050 and 2071-2100 (light and dark colors
respectively) obtained with the RCP4.5 and RCP8.5 scenarios driven HMS-ALADINS2 (blue
and red, respectively). The observations (CARPATCLIM-HU) for 1971-2000 are indicated
with grey. The lower and upper boundaries of the rectangles (the “boxes’) represent the lower
and upper quartiles of the dataset (25th and 75th percentiles, respectively), whilethelinein the
boxes shows the median value. The vertical dashed lines below and above the boxes show the
minimum and maximum values of the dataset.



Precipitation

The winter and summer mean precipitation changes over the model domain are
presented for both future time periods considering both scenarios in Fig. 4. The
simulation results suggest a precipitation increase both in summer and winter, for
alarge part of the domain, including Hungary. In summer, heavy increase (>70%)
—which can be caused by aninaccuracy inthe SST forcing field (CNRM, personal
communication) —is projected over the Black Sea, Adriatic Sea, and Aegean Sea
with both scenarios.

Over Hungary, the relative precipitation increase can reach 16-24% by the
end of the century on annual scale (Table 4), which is significant in most of the
grid cells for both future periods with RCP4.5 and RCP8.5, except above Lake
Balaton in 2071-2100 and over a western region in Hungary in 2021-2050 with
the RCP4.5 scenario (not shown). Considering seasonal mean changes, relative
precipitation increase occursin al seasons, moreover, larger increase is expected
in the far future period and with RCP8.5, except in spring and summer with
RCP4.5, when the magnitude of precipitation change remains nearly the same
between the two future periods. Precipitation change between 2021-2050 and
2071-2100 is the strongest in autumn, and considering RCP8.5, this season may
face the most precipitation surplus in the year (23 and 33% in the near and far
future, respectively). The smallest increase is expected in spring with the RCP4.5
scenario: 9% for 2021-2050 and 10% for 2071-2100. Note that gridpoints with
higher relative seasonal increase (reaching around 20%) are generally significant
areas, while areas of decrease occurring only with RCP4.5 are not significant
(except 1-2 grid cells) and may appear over small regions like Lake Balaton in
summer and spring of both future period, and like some parts of the Somogyi Hills
and the North Hungarian Mountains in autumn of 2021-2050 (not shown). It
should also be noted that no explicit lake parameterization is used in the model,
so, for example, results over Lake Balaton should be treated with caution in terms
of both temperature and precipitation.

The monthly means for each year of the 30-year period indicates large inter-
annual variability (Fig. 5) according to the spread of the values. The maximum
for the future is expected in June like in the reference period, but it can be even
wetter in the 21st century: the amount can reach 65-120 mm considering the 25th
and 75th percentiles for the end of the century, whileit varied between 50-85 mm
in 1971-2000 according to the CARPATCLIM-HU. In addition, HMS-
ALADINS52 simulations show the largest spread of monthly precipitation amounts
in August. February was usually the driest month in the past, and it seems likely
to be shifted to March in future. September was also a particularly dry month on
average in 1971-2000, while a secondary maximum occurred in November. In
comparison, the future monthly values suggest that mainly September is
responsible for the autumn precipitation increase, moreover, the secondary
maximum appears also in this month. The very low (near-zero) monthly
precipitation sums occurred between 1971 and 2000 are not likely to disappear in
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the 21st century, moreover, near-zero monthly sums are possible both in the near
and far future. The maximums can vary between 50 and 240 mm depending on
the considered month, and it suggests that much higher monthly precipitation
amounts could occur even in the near future than have been observed in the past.

JJA DJF

0
3
O
o

o

Lo

o

N

—

N

o

N
L
o8]
o
O
@
L
3
O
@

g

D

—

N~

o

N
o
(o]
o
O
o

Fig. 4. Summer (JJA) and winter (DJF) relative precipitation changes (%) projected for 2071—
2100 over the domain of HMS-ALADINS52 in case of RCP4.5 and RCP8.5 scenarios (reference
period: 1971-2000).
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Table 4. Annual and seasonal mean precipitation relative changes (%) in Hungary for
2021-2050 and 2071-2100 compared to 1971-2000, based on the results of HMS-
ALADIN52 model simulations with RCP4.5 and RCP8.5 scenarios, below them the
corresponding minimum and maximum changes are in parentheses based on 26 Euro-
CORDEX (EC) RCM simulations.

Annual MAM JIA SON DJF
13 9 17 9 18
RCPAS (413 [5-21 [16-15 [11-21] [5-24]
2021-2050
RCP8.5 17 13 15 z .

[0 16] [-1-26] [8-23] [7-19]  [5-26]

16 10 16 23 22
20712100 REPAS g7 g [1-29]  [16-17] [-1-25]  [4-29]
(EC: 2070
2099) 24 19 24 3 ?
RCP8.5 [3-37] [-2-32] [-19—48] [0-60] [17-53]

B CARPATCLIM-HU_1971-2000

‘mm]
o
o
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Fig. 5. Box-whisker diagram of the bias-corrected monthly precipitation sums (mm/month)
area-averaged over Hungary for every year of 2021-2050 and 2071-2100 (light and dark colors,
respectively), obtained with the RCP4.5 and RCP8.5 scenarios driven HMS-ALADINS2 (green
and purple, respectively). The observations (CARPATCLIM-HU) for 1971-2000 are indicated
with grey. The lower and upper boundaries of the rectangles (the “boxes’) represent the lower
and upper quartiles of the dataset (25th and 75th percentiles, respectively), whilethelinein the
boxes shows the median value. The vertical dashed lines below and above the boxes show the
minimum and maximum values of the dataset.
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3.2. Comparison to Euro-CORDEX model ensemble

Based on the results of the sel ected Euro-CORDEX simulations (for the cal culated
minimum-maximum ranges of the annual and seasonal mean temperature and
precipitation changes for the investigated 30-year periods see Tables 3 and 4), the
projected annual mean temperature change for Hungary lies approximately in the
same range (within 0.8 °C and 2.4 °C) with both scenarios for the near future,
while for 2070-2099, their ranges seem to be almost disoint: 1.3-3.3°C for
RCP4.5 and 3.2-5.7 °C for RCP8.5 (see Table 3 and also the box-whisker on the
right side of Fig. 8). Jacab et al. (2014) also concluded that a robust and
statistically significant warming, in the range of 1-4.5 °C for RCP4.5 and of
2.5-5.5°C for RCP8.5 is likely to occur on a European scale, with regional
differences.

Considering the maxima of the projected temperature changes by the Euro-
CORDEX models (Table 3), the largest warming may occur in winter in both
future periods, with both scenarios. However, the spread of the model results is
also the highest in this season (except with the RCP8.5 in the end of the century),
which makes winter a highly uncertain season in terms of the magnitude of
changes. In contrast, the lowest change is seen in spring (except in 20212050
with RCP4.5 scenario). Recall, that the largest warming was projected in winter
by HMS-ALADIN52 as well, while the least warming season was spring and
autumn using RCP8.5 and RCP4.5, respectively.

The projected precipitation change for both scenarios in the near future and
also for the RCPA4.5 scenario in 2070-2099 liesin the samerange, namely between
-16% and +29%. (Table 4). Only the RCP8.5 for the far future projects somewhat
higher values: except for spring, the maximum of the Euro-CORDEX ensemble
is between 48-60% depending on the seasons, but it must be added that only one
model is responsible for such high valuesin each season (Fig. 7). For both future
periods, most of the model simulations show seasona precipitation increase
(reinforcing the HMS-ALADINS2 precipitation projections) except autumn in
2021-2050 and summer. The sign of the summer change is uncertain in the Euro-
CORDEX results, i.e., both increase and decrease are projected. The concluded
tendencies are in good agreement with the findings of Kis et al. (2020) on a
monthly scale, even though they performed their analysis for a different multi-
model ensemble — 10 RCMs driven by 4 different GCMs with 3 RCPs (RCP2.6,
RCP4.5, and RCP8.5).

Looking at the scatter plots of projected precipitation and temperature
changes over Hungary, we hardly see any correlation between them neither for
2021-2050 (Fig. 6) nor for 2070-2099 (Fig. 7), and the sign of precipitation
change is uncertain in some seasons. Hawkins and Sutton (2011) showed that the
internal variability and model uncertainty have higher contribution to the total
uncertainty of the near-future temperature projections, while the scenario choice
has higher role in the second half of the century. Thisis valid also for Hungary:
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while the symbol s representing the changes are grouped in asmall circlefor 2021—
2050 in Fig. 6, for 2070-2099 in Fig. 7 they are clearly distributed between two
groups based on the applied RCP scenarios in each season. Szab6 and Szépszo
(2016) proved using global climate model results, that the main uncertainty source
of precipitation projections over the Carpathian Basin is the internal variability
along the whole century, and the scenarios choice has the smallest contribution to
the total uncertainty range. Our results coincide with this for Hungary: low and
high precipitation change as well as positive and negative precipitation changes
are equally projected both using RCP4.5 and RCP8.5 scenarios. The only
exceptioniswinter in the far future: higher precipitation increase is shown mostly
by RCP8.5 simulations (accompanied aso by higher temperature change). This
outcome for winter contradicts the conclusion of Szabé and Szépsz6 (2016) which
did not show any impact of the scenario choice on the winter precipitation change
signal over the Carpathian Basin, however, their study was based solely on GCM
outputs.

Fig. 6. Scatter plots of projected seasond (winter-DJF: upper |eft, soring-MAM: upper right,
summer-JJA: lower left, autumn-SON: lower right) changes of precipitation (y-axis, in %) and
temperature (x-axis; in °C) over Hungary according to the different RCP scenarios (represented
by different shapes) for 20212050 based on 26 Euro-CORDEX RCM simulaions
(highlighting CNRM-ALADINS) and HMS-ALADINS52. The reference period is 1971-2000.
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Fig. 7. Scatter plots of projected seasond (winter-DJF: upper left, spring-MAM: upper right,
summer-JJA: lower left, autumn-SON: lower right) changes of precipitation (y-axis; in %) and
temperature (x-axis; in °C) over Hungary according to the different RCP scenarios (represented
by different shapes) for 2070-2099 based on 26 Euro-CORDEX RCM simulations
(highlighting CNRM-ALADINS) and for 2071-2100 for HMS-ALADIN52. The reference
period is 1971-2000.

Finally, results of the three ALADIN versions are assessed and compared to
the Euro-CORDEX subset. Focusing on the annual temperature change (Fig. 8),
CNRM-ALADIN5S3 with the RCP4.5 is quite similar to HMS-ALADINS2, but
the former one projects somewhat lower temperature change throughout the 21st
century. In contrast, with the RCP8.5 scenario, CNRM-ALADIN53 produces
almost the same warming as HMS-ALADINS52. Looking at the scatter plots of
seasonal changes (Figs. 6 and 7), it is clear that the largest difference between the
two model versions occurs in winter with both scenarios. Note that the RCP8.5
driven HMS-ALADIN52 projects lower temperature increase than CNRM-
ALADINS3 in spring, summer, and autumn, which may contribute to the very
similar results on annual scale. Considering all the ALADINS, the RCP4.5
scenario driven simulations indicate more intense warming compared to the
RCP8.5 driven counterpartsin the early part of the century (Fig. 8).
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Comparing the temperature projections of the different ALADIN versionsto
the 26 members Euro-CORDEX ensemble in the 21st century over Hungary (see
Fig. 8), while HMS-ALADIN52 with RCP4.5 tends to alternate around the
median of the Euro-CORDEX ensemble during the whole time span, with the
RCP8.5 scenario it remains below the median till 2040, but then increasingly
exceeds it. CNRM-ALADING3’s projection is above the ensemble median, both
with RCP4.5 and RCP8.5 scenarios thanks to its larger warming. The concluded
features seem to be logical, because HMS-ALADIN52 and CNRM-ALADIN53
are consistent regarding the physical parameterization package, while CNRM-
ALADING3 is quite different, as large part of the parameterization has been
changed in that version. We also should remember that HMS-ALADIN52 and
CNRM-ALADIN53 share the same LBC error during the historical period,
whereas this error was corrected in CNRM-ALADING3 (see Section 2.2).

Fig. 8. The temporal evolution of the annua mean temperature change (°C) over Hungary in
the 21st century under the RCP4.5 and RCP8.5 scenarios based on 26 Euro-CORDEX RCM
simulations, smoothed with a 30-year window moving average. The median of these
simulationsisindicated with blueand red lines, the spread of these smulationsisindicated with
blue and pale red shades for the RCP4.5 and RCP8.5 scenarios, respectively. Thethin blue and
palered lines represent the 25th and 75th percentiles. HMS-ALADIN52, CNRM-ALADINS3,
and CNRM-ALADIN63 with RCPA4.5 (solid line) and RCP8.5 (dashed line) are indicated with
different colors. (The calculated average values areplotted at thefinal year of thetimeinterval.)
Ontheright, the box-whisker diagram of the Euro-CORDEX simulations sorted by the different
scenariosis shown for 2070-2099. The reference period is 1971-2000.
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Regarding the tempora evolution of the precipitation changes in the 21st
century, two seasonal examples are shown (Fig. 9). In winter, CNRM-ALADING3
isbelow the ensemble median with both scenarios. HMS-ALADIN52 and CNRM-
ALADINS53 behave similarly to each other, and project larger precipitation
increase than CNRM-ALADING3, which difference is reduced by the end of the
century. Notethat at the beginning of the century, HMS-ALADIN52 shows higher
mean precipitation values than even the maximum of the Euro-CORDEX
ensemble. By the end of the century, the HMS-ALADIN52 and CNRM-
ALADINS53 versions project approximately the same winter precipitation increase
asthe median of the Euro-CORDEX ensemble considering RCP4.5 scenario. This
is also true for the RCP8.5-driven HMS-ALADINS2, but CNRM-ALADIN53 is
shifted away from the median and projects|ower values. During summer, CNRM-
ALADING3 indicates precipitation decrease with both RCPs in 20212050 and
2071-2100 (Figs.6 and 7) in contrast to HMS-ALADIN52 and CNRM-
ALADIN53. However, looking at the whole century (Fig. 9), especialy with
RCP8.5, a few 30-year time periods may face precipitation surplus compared to
the past. Assessing the ALADIN versions in light of the Euro-CORDEX
ensemble, HMS-ALADIN52 with the RCP8.5 scenario sticks out from the spread
for some short time intervals. The extent of the uncertainties is much larger for
the summer season than for winter (just as the box-whisker diagrams on the right
sideof Fig. 9 clearly indicate thisfor 2070-2099). The RCP8.5 results compl etely
cover the ensemble uncertainty by the end of the century, underlining the
irrelevance of the scenario choice. However, it is also important to note that the
maximum of the summer change is provided by the WRF331F simulation which
isresponsible for about the upper 20% of the range from 2080 in case of RCP8.5
scenario. In autumn (not shown) and winter, this member gives a so the maximum
of the RCP8.5 range. The WRF331F simulation should be treated with caution,
as it has been removed from several national and international model ensembles
dueto its problematic behavior (Giorgi et al., 2016; Vautard et al., 2021).
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Fig. 9. The tempora evolution of the winter (DJF, top) and summer (JJA, bottom) mean
precipitation changes (%) over Hungary in the 21st century under the RCP4.5 and RCP8.5
scenarios based on 26 Euro-CORDEX RCM simulations, smoothed with a 30-year window
moving average. Themedian of these simulationsisindicated with blue and red lines, the spread
of these smulations is indicated with blue and pae red shades for the RCP4.5 and RCP8.5
scenarios, respectively. Thethin blue and pale red lines represent the 25th and 75th percentiles.
HMS-ALADIN52, CNRM-ALADIN53, and CNRM-ALADING3 with RCPA.5 (solid line)
and RCP8.5 (dashed line) are indicated with different colors. (The caculated average vaues
are plotted at the final year of the time interval.) On the right, the box-whisker diagram of the
Euro-CORDEX simulations sorted by the different scenarios is shown for 2070-2099. The
reference period is 1971-2000.

667



4. Summary and conclusions

In this paper, the history and some recent temperature and precipitation results of
the ALADIN-Climate regional climate model used at HMS have been
summarized. In addition to HMS-ALADIN52 simulations, a Euro-CORDEX
ensemble (which includes two additional versions of ALADIN-Climate) has been
studied in order to evaluate the climate change expected in Hungary and to assess
the representativeness of HMS-ALADINS2. The results of three ALADIN-
Climate models (HMS-ALADIN52, CNRM-ALADIN53, CNRM-ALADING3)
included in this study were evaluated with special focus. Temperature and
precipitation changes are analyzed mainly for 2021-2050 and 2071-2100 (2070—
2099 for Euro-CORDEX) with respect to 1971-2000 but for the whole 21th
century as well along RCP4.5 and RCP8.5 scenarios.

The HMS-ALADINS52 results for Hungary can be considered representative
for temperature: the gradual increase is significant, the annual mean change is
close to the median of the Euro-CORDEX simulations. The main source of
uncertainty in the second half of the century is the scenario choice (Szabd and
Szépsz6, 2016) which is confirmed by the results. According to the Euro-
CORDEX, the annual mean temperature increase is more moderate with RCP4.5
varying between 1.3°C and 3.3°C (2.9 °C in HMS-ALADIN52), while with
RCP8.5, theincreaseisbetween 3.2 °C and 5.7 °C (4 °Cin HMS-ALADIN52) by
the end of the 21st century.

Earlier studies based on SRES scenarios showed that Hungary liesin avery
uncertain area in Europe concerning the future evolution of precipitation
(Christensen et al., 2007b; Coppola et al., 2021), but the majority of the
simulations projected summer reduction and winter increase in the Carpathian
Basin. Szab6 and Szépszd (2016) proved the key role of the internal variability in
projection uncertainty for this region. HMS-ALADINS52 simulations suggest a
definite increase exceeding 10% in all seasons with RCP4.5 scenario. The Euro-
CORDEX simulations project a precipitation increase in winter and spring for
both future 30-year periods, and in autumn at the end of the century, however, the
sign of the summer changeis uncertain. Summer precipitation decrease may occur
for both scenarios, but higher temperature change val ues are associated with those
using the RCP8.5 scenario. Considering the whole century, HMS-ALADIN52
simulations arein the “upper” part of the spread (indicating higher valuesthan the
median), especialy in the first part of the 21st century, and also completes the
Euro-CORDEX rangein a positive direction.

The three ALADIN RCMs show similar evolution of annual temperature
change, though CNRM-ALADING63 indicates higher changes throughout the 21th
century. CNRM-ALADING3 shows lower precipitation increase compared to
HMS-ALADIN52 and CNRM-ALADIN53. Moreover, and contrary to the other
versions, CNRM-ALADING3 assumes decrease in autumn with RCP4.5 in the
near future, and in summer for both future periods with both scenarios (e.g., by
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the end of the century -0.5% and -11% relative change with RCP4.5 and RCP8.5,
respectively). CNRM-ALADING3 shows a nearly systematic lower precipitation
amounts in summer compared to HMS-ALADIN52 and CNRM-ALADIN53
(which are relatively close to each other) from the 2010s till the end of the 21st
century. The differences are likely related to the changes in physical
parameterizations made between ALADINS and ALADING as a result of a 10-
year model development. Only further investigations implying sensitivity
simulations for each parameterization may be able to reveal the specific reasons
behind the simulated differences. Thisisfar out of the scope of the current study.

Our further plans include the investigation of climate indices and extremes
in HMS-ALADINS2 projections as well asin the Euro-CORDEX ensemble, and
ajoint evaluation of HMS-ALADIN52 and REM 02015 — also adapted at HM S —
results.
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Abstract— Cities, due to their warmer and dryer local climate in addition to their dense
population, are subjected to large future climate change risks. Land surface models, with
detailed urban parameterization schemes, serve as an adequate tool to refine the rough
regional climate projections over the cities. In this study, the future temperature conditions
in Budapest are studied with the SURFEX land surface model (LSM), driven by the HMS-
ALADINS.2 regional climate model (RCM) and considering the high-emission RCP8.5
scenario. Special attention is dedicated to explore the differences between the RCM and
LSM in terms of the results, their interpretation, and further use in impact models.
According to the investigated model combination, the winter season may warm the most,
with 1.9 °Cin 2021-2050 and 4.3 °C in 2071-2100, although the magnitude of this change
issmaller in SURFEX than in ALADIN. Besides the mean changes, four climate indices,
based on high and low temperature thresholds, were studied, and it was found that the low
temperature indices (frost days and very cold days) may relatively decrease more in
SURFEX compared to ALADIN over Budapest, and in the city center compared to the
suburbs and rural areas. In addition, the urban heat island (UHI) intensity is projected to
decrease in SURFEX mainly in spring and summer (by 2071-2100 with 0.35 °C and 0.32
°C, respectively). Finally, asimple method is provided to correct the SURFEX temperature
fields, using the ALADIN model, with eliminated systematic biases and the simulated UHI
field.

Key-words: urban climate, urban heat island, climate projection, land surface model,
regional climate model
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1. Introduction

The physical characteristics of cities (i.e., impervious surfaces, large heat
capacity, narrow streets, high buildings) in addition to their anthropogenic
activities (e.g., internal heating and transportation) result in warmer, drier, and
more polluted air in cities than in natural areas (Oke, 1982). One of the most
studied phenomena of urban climate is the urban heat island (UHI), the
temperature difference between the city and its environment, which is the largest
at summer calm nights. Such unfavorable conditions may be exacerbated in the
future due to climate change (Revi et al., 2014), which - align with the increasing
population (UN, 2014) —, expose cities to severe heat related risksin the future.

Future climate change in urbanized areas is assessed at severa levels of
complexity. Wilby (2008) applied a statistical downscaling approach on general
circulation models and revealed that the nocturnal UHI of London may be further
strengthen by 2050 considering a medium-high (A2) emission scenario.
Similar conclusion was drawn for the British cities by Lo et al. (2020) using
HadREM3-GA7-05 (the regiona climate configuration of the Hadley Centre
Globa Environmental Model), and for Berlin by Langendijk et al. (2019) using a
subset of RCM simulations achieved in the frame of the Euro-CORDEX (the
European branch of the Coordinated Regiona Downscaling Experiments). In
contrast, Lauwet et al. (2015) showed that the nocturnal UHI will decrease in the
future based on the UrbClim urban boundary layer model simulations. This is
reinforced by Hamdi et al. (2014), using the SURFEX (Surface Externalisée) land
surface model (LSM) in offline mode driven by the ARPEGE-Climat (Action de
Recherche Petite Echelle Grande Echelle-Climat) global climate model (the offline
mode means, that the interaction between the GCM and the RCM is one-way).
Therefore, the future change of UHI intensity is uncertain and more research is
needed to better explore and understand the contributing physical processes.

In the Carpathian Basin, Budapest is the most populated capital, with its 1.75
million inhabitant and 525 n? territory (Tatai et al., 2018). In the downtown of
the city, the population density is between 10 000 and 20 000 people/km?, while
its outer rim is less built-in (here the population density does not exceed 2000—
2500 people/kn??).

From 1901 to present, the annual mean temperature has increased more than
1.1 °C in Budapest, which is comparable with the county-wise warming (Tatai et
al., 2021). However, considering the change of extreme events, the frequency of
warm temperature extremes has increased much more in Budapest, compared to
the measurements of other centennial stationsin Hungary. E.g., between 1901 and
2009, the number of heatwave days (Table 1) and hot days (when the maximum
daily temperature reaches 30 °C) hasincreased 17 and 11 days, respectively, while
the second largest increase is 13 days in case of heatwave days (in Szombathely,
situated in the western part of Hungary) and 8 daysin case of hot days (in Szeged,
situated in the southern part of Hungary, Lakatos and Bihari, 2011). Therefore,
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the UHI effect superimposed on the regiona climate change may explain the
outstanding increase of warm temperature indices in the capital. Moreover, Dian
et al. (2020) showed that the summer surface temperature in the downtown of
Budapest may be 5°C warmer compared to rural areas. The contribution of
urbanization to regional climate change has been quantified in Bassett et al.
(2020), and it was found that the cities' expansion in Great Britain between 1975
and 2014 explains 3.4% of the mean warming that reach up to 9.8% at the heavily
urbanized southeastern part of the country.

At the Hungarian Meteorologica Service (HMS), the SURFEX model is used
for urban climate modeling in offline mode coupled to the HMS-ALADINS.2 (the
5.2 version of the Aire Limitée Adaptation dynamique Dévé oppement International
RCM adapted a the HMS). This model chain has been previoudy subjected to
thorough validation, regarding the spatial and temporal characteristics of surface and
2m UHI (SUHI and UHI, respectively), and it was found that compared to satellite
measurements, SURFEX overestimates the SUHI extent especially during the day
(Zsebehaz and Mahd, 2021). However, gridpoint validation with respect to station
measurement showed that inherited from the driving ALADIN model, the LSM
heavily overestimates the summer mean temperature, but apart from this and from
the aspect of UHI, the model reasonably simulates urban temperature characteristics
(Zsebehaz and Maho, 2021; Zsebehdzi and Szépsz0, 2020).

Following the validation process, the SURFEX was applied for projection
simulations, i.e., experiment covering the 1950-2100 period was achieved, taking
into account the high-emission RCP8.5 scenario (Riahi et al., 2011). The urban
climate projection may contribute to impact studies (e.g., inthefield of health and
tourism) to provide a more detailed realizations of future meteorological
conditions, than an RCM is capable for. However, all models are loaded with
biases, that are usually corrected before implemented in the impact model (Ehret,
2012). Since the resolution of an LSM (~ 1 km) may be higher with at least one
order compared to the gridded observational datasets, generally used for
correcting the RCMs (~ 10 km), such post-processing of urban climate simulation
reguire somewhat new methods compared to the classical methodology devel oped
for RCMs and GCMs.

The aim of this paper is 1) to assess the future climate change of Budapest
from the aspect of temperature and UHI, 2) to explore how different the projected
changes are compared to the ALADIN, and 3) to provide a simple postprocessing
method to eliminate the biases of SURFEX.

In Section 2, the SURFEX and ALADIN models are briefly presented, and the
experimental design and evaluation methods are explained. Next, in Section 3, the
change of mean temperature, a few climate indices, and the UHI are studied in
SURFEX, and the temperature and climate indices are compared to ALADIN as
well. Alsoin this Section, asimple method is presented to produce detailed future
temperature fields that are free from systematic biases. Finally, our conclusions
and future plans are given in Section 4.
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2. Data and methods
2.1. The SURFEX land surface model

In the present study the 5.1 version of the SURFEX (Masson et al., 2013)
multilayer land surface model is used in offline mode. This set-up allowsto obtain
much higher resolution at low computing costs compared to the online coupling,
since the computation is realized in one dimension (vertically, for each gridcell
separately), therefore, the stability criterions for waves and advection are
irrelevant. SURFEX is responsible for simulating the land surface processes in
the constant flux layer of the planetary boundary layer, called surface layer. Four
different surfaces (natural land, inland water, sea, and town) can be differentiated
by the model, with dedicated schemes applied for each of them. The model can
be used for a wide variety of horizontal resolutions (from the order of 100 m to
the order of 100 km resolution) in a way, that the subgrid-scale surface
heterogeneity is handled by thetiling method (Avissar and Pielke, 1989). Theland
cover information is provided for SURFEX by the 1st version of the
ECOCLIMAP database (Masson et al., 2003) that reflects the land use, land cover
characteristics of the 90s. Among the four surface types, the town and natural land
surfaces are the most relevant from the perspective of Budapest, therefore, the
corresponding schemes are presented hereinafter.

Over natural land surfaces, the ISBA-3L (Interaction Soil Biosphere
Atmosphere model with 3 layers;, Boone et al., 1999) scheme is used, that
computes the surface and soil temperature and moisture with the force-restore
method (Noilhan and Planton, 1989).

The urban physical properties are calculated with the TEB (Town Energy
Balance) scheme (Masson; 2000) that follows the canyon concept. The surface
conditions of roof, wall, and road are treated separately with prognostic equations;
moreover, the surfaces are divided into three layers in order to take heat
conductivity into account. Only domestic heating is considered in our model set-
up as anthropogenic heat source, by preventing indoor temperature to fall below
19 °C. The near surface variables (e.g., 2m temperature, humidity, 10m wind
speed) are cal culated with the Surface Boundary Layer (SBL) scheme (Hamdi and
Masson, 2008; Masson and Seity, 2009).

2.2. Thedriving RCM: HMSALADINS.2

The atmospheric forcings of the SURFEX are temperature, humidity, wind speed,
and wind direction at afew tenth of m above ground level, downward shortwave
and longwave radiation, surface pressure, snow, and rain. In our case, theforcings
are provided by the HMS-ALADINS.2 (Ban et al., 2021) hydrostatic spectral
RCM. The physical parameterization package of ALADIN is derived from the
ARPEGE-Climat version 5 (Voldoire et al., 2013) atmospheric GCM. The
longwave radiation transfer is described by the RRTM (Rapid Radiation Transfer
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Model; Mlawer et al., 1997) scheme, while the shortwave radiation transfer is
parameterized according to Fouquart and Bonnel (1980). The large-scale
precipitation is determined by the Smith scheme (Smith, 1990), and the convective
cloud and precipitation formation are described in Bougeault (1985). The surface
scheme of ALADIN is SURFEX version 5, in which ISBA-3L was applied over
natural land surfaces. The vertical profiles of temperature, humidity, and wind
speed in the surface layer are parameterized according to Geleyn (1988).
Urbanized areas are substituted with rocks, and the physical processes are
described by the ISBA scheme.

2.3. Experimental design

In this study, a century-long urban climate simulation is assessed, performed with
the 5.1 version of SURFEX for Budapest driven by the HMS-ALADINS.2 and
using the RCP8.5 scenario, that estimates strong greenhouse gas (GHG) increase
throughout the 21st century. The simulation period of SURFEX was 1960-2100,
and the forcings are provided at 30 m above ground level by the ALADIN,
achieved at 10 km horizontal resolution on a domain covering Central and
Southeastern Europe (top panel of Fig. 1) for the period of 1951-2100. Thelatera
boundary conditions of ALADIN are obtained from the CNRM-CM5 (Centre
National de Recherches Météorologiques Coupled globa climate Model;
Voldoire et al., 2013), that was downscaled in two steps to the 10 km resolution
domain. On the period of 1951-2005, the RCM considered observed greenhouse-
gas concentrations (Meinshausen et al., 2011), while from 2006 to 2100, the
concentrations followed the RCP8.5 scenario. RCP8.5 foresees 8.5 W/m? global
radiative forcing increase by 2100 with respect to the preindustrial level.

The integration domain of SURFEX consists of 61x61 gridpoints with 1 km
horizontal resolution and covers Budapest and its vicinity (Fig. 1). The ALADIN
simulations are interpolated from 10 km to 1 km resolution using the 927
configuration of ALADIN (which is responsible for preparing the latera
boundary conditions for the RCM). The integration timestep of SURFEX is 300
s, to which the 3-hour forcings are linearly interpolated.
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Fig. 1. Top: integration domain and orography (m) of the HMS-ALADINS.2 regional
climate model. Bottom: land cover categories over the SURFEX integration domain
according to ECOCLIMAP (colored gridcells) and orography (m; white isolines). The
administrative border of Budapest is marked with black line, and the included ALADIN
gridpoints are marked with black x.

2.4. Evaluation methods

First, the temperature change and the change of four climate indices (heatwave
days, tropical nights, frost days, and very cold days, Table 1) are studied and
compared in SURFEX and ALADIN on 30-year periods, particularly 2021-2050
and 2071-2100, with respect to 1971-2000. The future change of climate indices
aremainly presented in relative form, since in thisway, differences between urban
and rural aress are better revealed than considering mean changesin days.

Besides considering the climate projections for the entire SURFEX domain,
the results over Budapest are scrutinized to assess the future climate change of
Budapest according to the RCM and LSM. Therefore, in ALADIN and SURFEX
the gridpoints outside of the administrative border of the city were masked oui.
Note that in the case of ALADIN, only 3 gridpointsfall over the area of Budapest
(seeFig. 1).

680



In addition to the change of temperature and climate indices, the future
evolution of UHI intensity was also studied in SURFEX. The UHI intensity was
computed as the following: in every timestep and every gridpoint the 2m
temperature value was subtracted from the mean rural temperature, which latter
was determined as the average temperature of pure rural grid cells.

Table 1. Name and definition of presented climate indices

Name of climate indices Definition

Heatwave days daily mean temperature> 25 °C
Tropica nights daily minimum temperature > 20 °C
Frost days daily minimum temperature< 0 °C
Very cold days daily minimum temperature < -10 °C

Finally, a smple bias adjustment method is applied in order to investigate
the expected mean future temperatures of Budapest, compared to its natural
environment. The adjustment was performed for the 30-year mean temperature of
ALADIN, using the 10 km resolution CARPATCLIM-HU gridded observation
dataset (Bihari et al., 2017) as reference. CARPATCLIM-HU was constructed
based on homogenized and interpolated station measurements according to the
MASH (Szentimrey, 2008) and MISH (Szentimrey and Bihari, 2007) methods,
and widely used for regiona climate model evaluation for Hungary. In the next
step, the UHI intensity field of SURFEX is added to the bias adjusted ALADIN
according to the following equation:

Tcorr = (TRCM,f - TRCM,p) + Tobs,p + UHIf, (1)

where Trepy ¢ and Tgey, Stand for the future and past 30-year area means of

ALADIN, T,y refers for the past 30-year area mean of CARPATCLIM-HU,
while UHI; means the future 30-year mean UHI field.
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2021-2050

2071- 2100

3. Results and discussion
3.1. Change of temperature and extreme events

First, the 2 m temperature change over Budapest is investigated in SURFEX and
compared with the 10 km resolution ALADIN projections. The most warming
season according to SURFEX is winter with 1.9 °C in 2021-2050 and 4.3 °C in
2071-2100, while the smallest temperature change is expected in spring (Fig. 2,
Table 2). Looking at the seasonal warming trend in the ALADIN, it is clear that
the LSM projects lower temperature change than the RCM in all seasons except
autumn (Fig. 3, Table 2). Thelargest difference (0.5-0.6 °C) isobtained in spring
and summer in both future periods, and in winter in 2071-2100. In addition, it is
mentioned that this departure is increasing in the beginning of the 21st century
(until 2030-2040), then it remains nearly constant except winter, when this
process continues until 2060s. Since the abovementioned findings are valid over
the whole domain as well (not shown), this behavior is rather attributed to the
LSM itself and not limited to the TEB scheme over the urbanized areas.

MAM JJA SON DJF

Fig. 2. Seasonal mean temperature change (°C) in 2021-2050 and 2071-2100 simulated
by SURFEX. Reference: 1971-2000.

Table 2. Annual and seasonal mean temperature change (°C) in 20212050 and 2071-2100
simulated by ALADIN and SURFEX over Budapest. Reference: 1971-2000

Annual  MAM JIA SON DJF

ALADIN 2021-2050 1.7 15 1.7 15 2.2
20712100 4.1 3.7 4.4 3.6 48
2021-2050 15 1.1 1.3 1.4 1.9
SURFEX 20712100 3.7 3.2 3.9 3.4 43

682



Fig. 3. Seasonal temperature change (°C) in SURFEX and ALADIN between 2000 and 2100
averaged over Budapest. Theyear-to-year variability is smoothed with 30-year running average
(in each year the precedent 30-year mean isindicated). Reference: 1971-2000.

Regarding the spatial distribution of temperature change in SURFEX, the
city and itsrural vicinity portrays similar warming tendency, except in spring and
summer by the end of the century, when the temperature increase is 0.25 °C less
in Budapest, compared to the other parts of the domain (Fig. 2). Similar patternis
seen only in the minimum temperature change fields, the maximum temperature
change does not affected significantly by the land cover type (not shown).

The future change of climate indices portrays different relationship between
the projected values in ALADIN and SURFEX in some cases, compared to the
conclusions based on the mean temperature changes. While ALADIN indicates
larger relative changes of heatwave days and tropical nights with respect to
SURFEX, which is especially notable for tropical nights (the difference between
the two models is 66% and 207% in 2021-2050 and 2071-2100, respectively);
the indices, representing low temperatures, decrease to a greater extent in
SURFEX. Although it is noted that the change expressed in daysis aways larger
in ALADIN, i.e.,, SURFEX projects 1-3 days less heatwave days and tropical
nights in both future periods, 10 days less frost days in 2071-2100, and 6-9 days
less very cold days in the near and far future, respectively. The controversies for
low temperature indices can be explained by that they are less frequent in
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SURFEX than in ALADIN in the reference period (with 34 days for frost days
and with 9 days for very cold days; Table 3) partly due to the warming effect of
the city, while the projected future changes in the two models are less different.

Considering the spatial distribution of the relative change of climate indices
in SURFEX, the downtown of Budapest (that is a small central area on the right
side of the Danube) may encounter larger relative decrease of frost days (in 2021—
2050 30-35%, in 2071-2100 more than 70% reduction is projected) than in the
outer districtsor intherural areas of the domain (Fig. 4). In contrast, the heatwave
days change the least in the downtown and in Budapest compared to the other
parts of the domain.

Frost days Heatwave days

days days

1971-2000 mean

changein 2021-2050

% %

changein 2071- 2100

Fig. 4. Average number of frost days and heatwave days in SURFEX in 1971-2000 and
their relative changes (%) in 2021-2050 and 2071-2100, with respect to 1971-2000.
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Table 3. Average number of climate indices in 1971-2000 (first row) and their mean and
relative changes (days and %, respectively) in 20212050 and 2071-2100 (second and third
rows) over Budapest simulated by ALADIN and SURFEX, with respect to 1971-2000

Heat wave days Tropical nights Frost days Very cold days
unit ALADIN SURFEX ALADIN SURFEX ALADIN SURFEX ALADIN SURFEX
1712000 4 28 3 13 33 118 84 15 6
means
% 59 43 126 60 21 27 13 &
changein
2021-2080 s (17) (14) (16) A7) (25 (22 (1) (5
changein % 148 127 374 167 51 62 98  -100
01210 goys (42 (40) (49 (47 (6D (B (15  (-6)

3.2. Change of UHI

The decrease of UHI intensity at 0 UTC is projected by SURFEX in each season
for both future periods (Fig. 5 and Table 4). Spring and summer may reckon with
the largest change, i.e., -0.27 and -0.22 °C in 2021-2050 and -0.35 and -0.32 °C
in 2071-2100, respectively. Note that these seasons are characterized by the
largest UHI inthepast (2.0 in spring and 2.1 °C in summer). In contrast, in autumn
and winter, the UHI intensity drop does not exceed 0.2 °C in each future period,
and thereis no substantial difference between the urban and rural gridpoints. The
projected negative tendencies seem to significantly reduce in the second half of
the century, since the decrease between 2021-2050 and 1971-2000 is much larger
than between the two future periods. Note that ALADIN (the driving model of
SURFEX) projects 10-30% wetter future conditions for Hungary throughout the
year for the entire 21st century in conjunction with a strong temperature increase
(Ban et al., 2021). However, this does not have straightforward impact on the soil
conditions. In summer, the soil moisture (of the middle layer) is reduced by up to
5% at the end of the century over the SURFEX domain (Fig. 6). In spring and
autumn, after afew % of increase in the first half of the century, the soil moisture
returns to the conditions of the reference period, while it increases heavily in
winter. A continuous increase is seen in the soil temperature (also of the middle
layer) in every seasons, most intensively in spring, although, the largest 2 m
temperature was obtained in winter. All this suggests that the more precipitation
in ALADIN cannot prevent the summer soil moisture loss in the future, and the
strong soil temperature increase in spring and summer (while the surface
propertiesof the paved and built-up areasin the city remain invariant) may explain
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the larger nocturnal UHI reduction in these seasons. Hamdi et al. (2014) and
Chapman et al. (2019) found similar results in terms of future reduction of the
nocturnal UHI intensity for Brussels, Paris, and Brisbane, and aso explained the
stronger drying of natural land surfaces around the city by soil moisture reduction.

Table 4. Seasonal mean nocturnal UHI intensity (at 0 UTC; °C) in Budapest simulated by
SURFEX in 1971-2000 (first row), and its mean changes (°C) in 2021-2050 and 2071—
2100, with respect to 1971-2000 (second and third rows)

MAM JJA SON DJF
1971-2000 means 2.0 21 18 14
changein 2021-2050 -0.27 -0.22 -0.14 -0.13
changein 2071-2100 -0.35 -0.32 -0.16 -0.14
1971-2000 2021-2050 2071-2100
=
<
=
<
D
bapl
°Cc
°C

3
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Fig. 5. First column: seasonal mean nocturnal UHI intensity (at 0 UTC; °C) simulated by
SURFEX in 1971-2000. Second and third column: change (°C) of mean nocturnal UHI
intensity in 2021-2050 and 2071-2100, respectively; reference: 1971-2000.
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Fig. 6. Seasonal mean soil moisture (WG2) and soil temperature (TG2) change (in % and
in °C, respectively) between 2000 and 2100 in the middle soil layer of SURFEX averaged
over the model domain. The year-to-year variability is smoothed with 30-year running
average (in each year the precedent 30-year mean isindicated). Reference: 1971-2000.

3.3. Biasadjustment of mean temperature of SURFEX

In the previous sections it was shown, that the high temperature extremes may
change at a smaller rate inside the city than in the outskirt regions, and the UHI
intensity may reduce in the future. Despite these results indicate the modification
of the urban-rural contrast in terms of temperature and temperature indices, this
change is much smaller than the contrast itself. Therefore, the fact that the
urbanized areas are especialy exposed to certain aspects of climate change is
partly hidden intheresults presented by the classical way developed in the climate
model community, i.e., considering mean changes. All these suggest that the (bias
adjusted) future means provided by the model may provide more actionable and
visionable information for the usersinterested in urban climate.

All bias adjustment methods require long, quality observations, suitable for
the target needs. From urban climate perspectives, to correct a km-scale land
surface model, a km-scale gridded reference dataset based on station
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measurements, that comprises urban signature is needed. In Budapest, from the
beginning of the 2000s, four urban stations are operating, although most of them
are not included in the 10 km resolution CARPATCLIM-HU. Therefore, even if
it isinterpolated to 1 km resolution, the detailed urban effect would be missing
due to the lack of long urban measurements. Therefore, using this reference to
directly bias-correct the SURFEX outputs would eliminate the urban pattern from
the model. In the following, a ssmple method is given to provide future means of
SURFEX that are cleaned from systematic biases.

Since the benefit of SURFEX is that it can simulate the urban effect
compared to ALADIN, the ideaisto bias adjust the 10 km resolution area means
of ALADIN using the CARPATCLIM-HU and adding the “ urban effect” field to
this value. E.g., in the case of temperature, this urban effect is the UHI, since it
shows how different the temperature is over the city compared to the environment
(that can be simulated by ALADIN). Fig. 7 shows the mean seasonal temperature
of SURFEX in 2021-2050 and 2071-2100. Based on this method, the mean
temperature in Budapest can be 22—23 and 25 °C in summer, and 5-6 and 67 °C
in winter, in 20212050 and 2071-2100, respectively, which are approximately
2 °C warmer than the natural surfacesin the outskirts.

It must be mentioned, that this method should be considered as a first
approximation to bias-adjust SURFEX and can be improved several ways. First,
Budapest is situated in a complex orography area, surrounded by mountains, and
for the mean rural temperature computation, we considered al rura gridpoints
regardless of their elevation. However, especialy the Buda Hills have a cooling
effect on the rural temperature, that may result exaggerated UHI intensity. The
UHI intensity must be especially well defined, when it may affect the outcome of
the impact studies.

Moreover, in this method only the RCM is corrected, but the inaccuracies of
urban pattern (i.e., the intensity and spatial distribution of UHI) were kept
unchanged due to the lack of a high-resolution urban station network.

Finally, it must be also bear in mind, that no urban development scenario
(i.e., land cover change) was taken into account in this century-long simulation,
therefore, only the impact of altered climate conditions was assessed on the
present conditions of Budapest. However, Chapman et al. (2019) showed that
considering urban growth and climate change hand in hand, the negative effects
of climate change (e.g., number of hot nights, dangerous heat stress) were
amplified compared to ignoring the change of city structure. Lemonsu et al. (2015)
studied several urban expansion and structural change scenarios and found that
urban densification increases UHI especially at night, while implementing green
areas in the city center led to reduced nocturnal UHI, but amplified daytime
values.
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Fig. 7. Seasona mean bias-adjusted 2m temperature (°C) in 2021-2050 and 2071-2100
according to the SURFEX.

4. Conclusions

In this paper, the first results of future temperature and UHI changes of Budapest
achieved by the ALADIN driven SURFEX land surface model are presented.
Besides the analysis of the 1 km resolution SURFEX, the scope of the paper was
to investigate how different the simulated urban climate is from the 10 km
resolution RCM results, that considers urban processes with asimple bulk scheme
(i.e., the urbanized surfaces are represented by rocks).

The largest temperature change over Budapest is expected in winter (1.9 °C
and 4.3 °Cin 2021-2050 and 2071-2100), that isin linewith the ALADIN results
for Hungary (Ban et al., 2021). Except for autumn, SURFEX clearly projects
more moderate temperature change compared to its driving model, especialy in
spring and summer. This discrepancy may be explained by that the set-up of
SURFEX dlightly differsto the one built-in ALADIN, and that the LSM does not
model the full atmosphere.
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Heatwave days and tropical nights may increase in the city with 43% and
60% in 2021-2050, while they may at least double at the end of the century. Only
low temperature indices are projected to larger decreasein SURFEX compared to
ALADIN and in the downtown compared to the suburbs and rural areas.

According to SURFEX, the nocturnal UHI in Budapest may be less intense
in the future, to the most in spring and summer, when the model gave the strongest
UHI in the past. This natural UHI mitigation may be explained by that the soil in
the rural areas dry out in the future, therefore, these areas warm at a higher rate
compared to the city. These findings reassure, that the relationship between the
urban and rural areas may change in the future due to altered physical processes,
which can properly be simulated only with dynamical models.

Finally, an attempt to bias-adjust the SURFEX temperature fieldswere given
using the deltamethod on ALADIN mean temperature, superimposed by the UHI
field derived from SURFEX. The bias-adjusted future results of SURFEX reveal
that more extreme conditions are expected in the city, this information may be
hidden by considering mean changes.

However, it must be emphasized, that in order to adequately estimate the
future climate change in cities, more simulations are needed, driven by different
scenarios and models. This need drives our future plans, to conduct century-long
simulations with SURFEX with the RCP4.5 scenario and to couple SURFEX to
the REMO regional climate model, also adapted at the HMS.

Acknowledgment: The research was funded by the Environmental and Energy Efficiency Operative
Program (KEHOP; grant nhumber: KEHOP-1.1.0-15-2015-00001). ALADIN-Climate simulation was
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papers in any field of meteorology and
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e research papers on new results of
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e critical review articles summarizing
the current state of art of a certain
topic,

» short contributions dealing with a
particular question.
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review”, therefore, such contributions are
also welcome. The papers must be in
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by a native speaker if necessary.
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scripts to

Editor-in Chief of IDOJARAS
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including all illustrations. MS Word for-
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in-Chief will inform the author(s) whether
or not the paper is acceptable for
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the name(s) of the author(s), their
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applied data and methods as well as the
basic conclusion(s) of the paper.
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10) to help to classify the topic.

Text: has to be typed in single spacing on
an A4 size paper using 14 pt Times New
Roman font if possible. Use of S.I.
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authors: Gamov and Cleveland (1973); and
if there are more than two authors: Smith et
al. (1990). If the name of the author cannot
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same year by the same author, letters a, b, c,
etc. should follow the year of publication.
DOI numbers of references should be
provided if applicable.

Tables

their numbers and legends

artwork submission.
More information for authors is available:
journal.idojaras@met.hu

should be marked by Arabic
numbers and printed in separate sheets with
given below
them. Avoid too lengthy or complicated
tables, or tables duplicating results given in
other form in the manuscript (e.g., graphs).
Figures should also be marked with Arabic
numbers and printed in black and white or
color (under special arrangement) in separate
sheets with their numbers and captions
given below them. JPG, TIF, GIF, BMP or
PNG formats should be used for electronic
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