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Abstract— Investigation of river flow volume in different conditions as a function of 
temperature and rainfall variables can be quite effective in understanding the hydrological 
and hydro-climatic conditions of the watershed. Multiple linear regression models were 
applied in estimating river flow in several studies due to their straightforwardness and 
appropriate interpretation of results. In this study, to overcome the limitations of the 
multiple linear regression model, the Bayesian quantile regression model was used to 
estimate the river flow volume as a function of rainfall and temperature, and the results 
were compared. The data and information used for the Qareh-Sou basin in northern Iran 
are of substantial environmental and socio-economic importance. Five data series, 
including spring, summer, autumn, winter, and annual series, were created and used for this 
study. It was found that the Bayesian quantile regression model has considerable flexibility 
to model the volume of flow for different quantiles, predominantly upper and lower 
quantiles, and can be used to model high and low flows. With increasing the values of 
quantiles, a limited decreasing pattern in the effect of rainfall on the volume of flow was 
identified, which can be due to increasing the effect of other factors in the formation of 
extreme flows of the river. For summer data in high quantiles, the effect of rainfall on river 
flow volume shows an increasing pattern. This pattern is different from the other studied 
series, which may be due to the low base flow in summer. The results confirm that the 
application of Bayesian quantile regression compared to multiple linear regression leads to 
much more valuable information on the impact of rainfall and temperature on river flow 
volume. 
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1. Introduction 

One of the critical components of the hydrological cycle is river flow (Ansarifar 
et al., 2020a). This component can interact with other components such as 
groundwater (Ansarifar et al., 2020b). Surface water, which is the result of 
rainfall-runoff responses in a basin, is a potential source that, if properly managed, 
can meet agricultural (Steinfeld et al., 2020), industrial (More et al., 2020), and 
environmental (Karimi et al., 2021) demands. The increase in water demand in 
different regions, especially in arid and semi-arid regions, shows the need for 
optimal water resources management. Therefore, the estimation of river flow 
resulting from climatic factors is the basis for studying many different plans to 
develop and exploit water resources (Bahrami et al., 2019). Estimating river flow 
in a basin is a complex one, in which human knowledge, understanding, and 
knowledge of the physical laws governing it are incomplete. Several factors affect 
the river flow pattern in the basin area (Salarijazi and Ghorbani, 2019). These 
factors include topographic features, river morphology, rainfall dynamics, 
temperature, and human activities. Estimating river flow under the influence of 
hydroclimatic variables is possible using different approaches (Mudbhatkal et al., 
2017). In general, there are two major approaches to modeling river flow. The 
first approach is knowledge-based, known as modeling, based on the basin area's 
characteristics and physical laws (Kavian et al., 2020). This approach requires a 
wide range of different information and data that, in most cases, may not be 
available (Bahremand et al., 2021). In most parts of the world, especially in 
developing countries, this approach is limited. The second approach is data-
driven, which involves analyzing the data set recorded over a historical period 
(Chadalawada et al., 2017). There is a need for more limited data and information 
in this approach than the first approach (Nourani et al., 2019). The use of data-
driven models has developed in recent years (Sezen et al., 2019). Although 
Modeling with a data-driven approach may not be sufficient to interpret the 
physical processes within the basin, it can accurately estimate the amount of river 
flow (Mishra et al., 2018: The multiple linear regression model is one of the basic 
and well-known models in the data-driven approach (Niedzielski et al., 2019). 
This model has several advantages. The multiple linear regression model is fast 
and straightforward and leads to specific mathematical equations. Also, by 
interpreting these equations, we can understand the effect of each of the model 
inputs on the output (Cho and Lee, 2018: A multiple linear regression model has 
been used in meteorology, climatology, hydrology, and water resources due to the 
stated advantages (Niu et al., 2019: Using data from 33 catchments in Iowa, 
Schilling and Walter (2005) used multiple linear regression modes to predict total 
flow, base-flow, and flood flow. The results of this study indicate a significant 
effect of rainfall over other input variables of the model. A multiple linear 
regression model was developed using principal component analysis and 
discrepancy ratio modified by Noori et al. (2010). This study showed that the 
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developed model has better performance than the standard model for predicting 
river flow. The multiple linear regression model was developed using bootstrap 
resampling and wavelet analysis, and was evaluated to predict the daily flow of 
the river. This study indicates that it is substantial that the developed model has 
better accuracy in estimating the peak flow of river flow in flood conditions than 
the standard model of multiple linear regression (Sehgal et al., 2014). Latt and 
Wittenberg (2014) studied artificial neural networks and stepwise multiple linear 
regression models to simulate the flow of the Chindwin River in Myanmar. They 
showed that the multiple linear regression model has good accuracy in predicting 
river flow, but it is weak in estimating extreme values. The results of a study in 
India showed that the multiple linear regression model could be used as a suitable 
option to assemble different hydrological models to predict river runoff (Kumar 
et al., 2015). Using 14 years of Wainganga River runoff data in India, the 
efficiency of the multiple linear regression method to simulate river flow using 
rainfall and temperature data was studied. The study results indicate the 
appropriate efficiency of the multiple linear regression model in rainfall-runoff 
modeling and the effect of different inputs on increasing the accuracy of the 
results (Patel et al., 2016). Tsakiri et al. (2018), in their research on river flow 
modeling in the Mohawk River in New York, concluded that the use of a multiple 
linear regression model has the advantage that it can lead to a physical 
interpretation of the river flow time series. He also pointed out that the 
development of a standard model can significantly improve the model's accuracy. 
Popat et al. (2020) used a multiple linear regression model to predict river flow 
in the Wernersbach catchment, Germany. In this study, rainfall, runoff, and soil 
moisture information were used for modeling. The results show that the multiple 
linear regression model is not accurate enough to predict extreme flows.  

The quantile regression model has been considered in meteorology, 
climatology, and hydrology in recent years (Nguyen et al., 2021). This model has 
far fewer limitations than the multiple linear regression model (Hossain et al., 
2021). Shiau and Chen (2015) used the quantile regression model to estimate the 
uncertainty of river sediment load as an appropriate model. Sa'adi et al. (2017) 
used the quantile regression model to estimate changes in the variable probability 
distribution function of rainfall in Sarawak, Malaysia. They described this method 
as a suitable tool in this field. In another study, the quantile regression method 
was used to investigate changes in extreme rainfall in South Korea. Based on the 
results, the study areas were classified according to the type of changes, and the 
use of this method was recommended to classify rainfall changes (Uranchimeg et 
al., 2020). In another study, the quantile regression model was used to predict 
dissolved oxygen concentrations considering land use and soil cover (Ahmed and 
Lin, 2021). 

A review of the research using the multiple linear regression model to predict 
river flow shows that this model has relatively good accuracy for predicting the 
mean values of river flow. At the same time, it should be developed for extreme 
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flow modeling. The Bayesian quantile regression model has also been developed 
to be suitable for the modeling of extreme flows. This research investigates the 
Bayesian quantile regression model in predicting river flow volume in different 
time scales and compares it with the multiple linear regression model. Moreover, 
the impacts of inputs and modeling results in different standard and extreme flow 
conditions are compared and analyzed for better interpretation. The Qareh-Sou 
River in northern Iran is of significant environmental importance, and in this 
study, the effect of rainfall and temperature on the volume of this river flow is 
studied. 

 

2. Materials and methods 

2.1. The Qareh-Sou basin 

The Qareh-Sou basin, with an area of 1670 square kilometers, forms a significant 
part of Golestan province in northern Iran. This basin area is limited to the 
Gorgan-Roud basin from the north and east, the Naka-Roud basin from the south, 
and the Gorgan Bay basin and the Great Caspian Sea from the west. The Qareh-
Sou River discharges into the bay near Qareh-Sou village. The main Qareh-Sou 
basin area is covered by forest in the south, while in the north, an alluvial plain 
with agricultural and residential uses forms the basin. The differences in elevation 
between the southern heights and northern alluvial plain, besides heavy rainfall, 
have caused very young south-north rivers to flow with severe erosion. After 
reaching the plain, these rivers leave their primary sediment by forming large-
grained alluvial fans. Due to a sudden change of direction, the rivers upstream of 
this basin discharge most of their sediments in the river after joining the main 
river of the Qareh-Sou basin. The Qareh-Sou River is vital in supplying 
agricultural water resources in the region, and therefore, it has socio-economic 
importance. 

Another point is that this river is the leading supplier of freshwater resources 
for Gorgan Bay. Gorgan Bay is of enormous environmental and ecological 
importance. Due to the quite effective role of the Qareh-Sou River, any changes 
in the flow volume of this river can be the source of severe effects on this water 
body. The data of Siah-Ab and Gorgan hydrometric meteorological stations were 
used to investigate the effect of rainfall and temperature variables on the flow 
volume of the river. The location of the studied basin, and the hydrometric and 
meteorological stations are shown in Fig. 1. 
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Fig. 1. Location of Gorgan meteorological and Siah-Ab hydrometric stations in the Qareh-
Sou basin.  

 

 

2.2. The multiple linear regression model  

One of the standard methods in multivariate analysis is the multiple linear 
regression model (Kadam et al., 2019). A linear relationship is established 
between the independent variable and one or more dependent variables (Jolánkai 
and Koncsos, 2018). In the multiple linear regression, the parameters of a linear 
model are estimated using an objective function and the values of the variables 
(Zhang et al., 2020). In the linear regression, the considered model is a linear 
relationship between the model parameters (Ali et al., 2020). Thus, if we have n 
observations of x independent variable with p dimension and want to establish a 
linear relationship with the dependent variable y, we can use the following linear 
regression model (Li et al., 2019): 
 
 𝑦 = 𝛽 + 𝛽 𝑥 + ⋯+ 𝛽 𝑥 +  𝜀   ,       𝑖 = 1, … ,𝑛 , (1) 
 
where β is the model parameter. Index i shows the observation number and ε is 
considered a regression model error. If two independent variables are linearly 
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related to a dependent variable in multiple linear regression, the relationship will 
form a plane (Fig. 2). 
 
 

 

Fig. 2. Multiple linear regression model for two independent variables. 

 
 

2.3. The Bayesian quantile regression model 

Research on changes in hydrological and hydroclimatic variables has been mainly 
based on models that examine the median or average changes (Hu et al., 2020; Ali 
et al., 2019). An important point to note is that in hydrological and hydroclimatic 
events, the upper and lower quantile, which can represent extreme events, are 
extremely important (MacLeod et al., 2021). Simultaneously, it should be 
considered that conventional models in this field do not have good performance 
(Shiau and Huang, 2015). The study of changes in hydrological and hydroclimatic 
variables in the upper tail of the probability distribution function is of great 
importance for studies related to risk and uncertainty in design related to 
hydrology, climatology, meteorology, and the environment (Shiau and Chen, 
2015). The Bayesian quantile regression model can be a suitable and practical tool 
to study the upper and lower quantiles (Uranchimeg et al., 2020). Estimating the 
changes in the upper and lower quantiles can be used to study wet and dry seasons 
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and extreme floods, which shows the importance of this type of analysis (Kalisa 
et al., 2021). In the quantile regression, the values of conditional quantiles of 
dependent variables estimate for changes in independent variables (Wan and Liew, 
2020). Therefore, the quantile regression model is entirely different from the 
known model of linear regression and multiple linear regression that examines the 
conditional mean changes of the dependent variable (Bogner et al., 2017). The 
Bayesian regression has been developed to overcome the limitations of quantile 
regression. More information on quantile regression and Bayesian quantile 
regression are available from sources such as Acharya et al. (2020), He et al. 
(2021), and Shin et al. (2021). The following function is minimized in the quantile 
regression model to estimate regression lines for different quantiles (Wang et al., 
2018): 
 
 𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛∑ 𝜌    (𝑦 − 𝑥 𝛽)     ,  (2) 
 
where 𝛽  is 𝜏th quantile regression line. The 𝜌 (𝑥) = 𝑥(𝜏 − 𝐼(𝑥 < 0)) is also 
considered a loss function, and i is defined as an indicator function. The 
maximization of a regression likelihood function generated by asymmetric 
Laplace densities, presented by Yu and Zhang (2005), is the same as the 
minimization of the previous equation: 
 
 𝑓(𝑥|𝜇, 𝛿, 𝜏) = ( ) exp [−𝜎 = 𝜌 ]   , (3) 
 

The Bayesian inference can estimate the studied parameter's entire posterior 
probability distribution function, including parameter uncertainty, based on this 
inference (Yang, 2019). In this study, a Bayesian quantile regression model was 
used to investigate the relationship between the river flow volume as a dependent 
variable and the rainfall and temperature as independent variables. The 
calculations were performed using the "bayesQR" package (Benoit and Van den 
Poel, 2017) developed in the R environment.  

 

3. Results and discussion 

The data were divided into five series: annual, spring, summer, autumn, and 
winter. The reason of division is that the relationship between rainfall and 
temperature with the volume of river flow experience changes in different 
seasons. According to the generated series, the relationship between 
hydroclimatic variables and river flow volume was investigated using multiple 
linear regression and Bayesian quantile regression models, as reported below. 
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Examination of the slope values of Bayesian quantile regression lines in the 
annual data shows that the relationship between the annual rainfall and annual 
flow volume with the slope range (7–156) is direct, which increases with 
increasing the values of quantiles (Fig. 3). In the upper quantiles, this incremental 
pattern disappears, which may be because a set of other factors can also have 
significant effects on the annual extreme flows. The annual temperature effect on 
the annual flow volume with a slope range of ((-3) –15) is also direct in some 
quantiles and indirect in others. The maximum effect of temperature on the annual 
flow volume is in the upper quantiles. Comparing the effect of rainfall and 
temperature on the annual flow volume confirms that rainfall has greater effect 
than temperature, so that with increasing the values of quantiles, the difference 
between the effect of rainfall and temperature increases.  

 
 

   

    

Fig.  3. Results of Bayesian quantile and multiple linear regression models for the annual 
series. 

 

 
The slope obtained from the multiple linear regression method for rainfall 

and temperature is 97 and 20. In the Bayesian quantile regression model, there is 
a negative slope for temperature in some quantiles. In contrast, in multiple linear 
regression, there is a positive slope sign. The slope value obtained in the multiple 
linear regression model for rainfall is in the range of slopes obtained in the 
Bayesian quantile regression model. For temperature, the slope value obtained in 
the multiple linear regression method is outside the slope range obtained in the 
Bayesian quantile regression model. 
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The slope of Bayesian quantile regression lines in the spring data for the 
rainfall variable is in the range of ((-5) –4), indicating that the relationship 
between the spring rainfall and spring flow volume is direct in some quantiles and 
indirect in others (Fig. 4). A remarkable effect of spring rainfall on spring flow 
volume is detectable in the upper quantiles. The slope value associated with 
different quantiles for the temperature variable is in the range ((-28) – (- 3)), which 
means that the relationships between the spring temperature and spring flow 
volume in all quantiles are indirect. The remarkable effect of spring temperature 
on the volume of spring flow is in the middle quantile, while in the upper and 
lower quantiles, this effect is significantly reduced. In spring, the effect of 
temperature on runoff volume is more than the effect rainfall. The most 
remarkable difference between the magnitude of the effects of these two variables 
can be seen in the middle quantiles. The slope obtained from the multiple linear 
regression model for temperature and rainfall is estimated to be -18 and -17, 
respectively. Therefore, it can be seen that in the Bayesian quantile regression 
model, in some quantiles, rainfall has a positive slope, but in multiple linear 
regression, the slope sign is negative. The value of the slope obtained in the 
multiple linear regression method for rainfall is outside the range of the slopes 
obtained in the Bayesian quantile regression model, while for temperature, there 
is the opposite behavior. 

 
 

    

   

Fig. 4. Results of Bayesian quantile and multiple linear regression models for the spring 
series 
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Summer data show that the slope value for the temperature variable is in the 
range (0–9). Therefore, it can be said that the relationships between the 
temperature and flow volume in all quantiles are direct (Fig. 5). In general, with 
increasing the values of quantiles, the magnitude of the effect of temperature also 
increases, and experience a decrease only in the last quantile. This result is 
because in upper quantiles, the influence of other factors on flow volume 
increases. For the rainfall variable, the slope value was in the range (0–46), and 
with increasing the quantile value, the slope magnitude increases significantly. 
This result is due to the predominant effect of rainfall on the volume of flow in 
summer, because in this season, according to the river conditions, the river flow 
in most conditions is the base flow. In the lower and middle quantiles, the effect 
of temperature is greater than that of rainfall, although this difference is not 
remarkable. In upper quantiles, the magnitude of the effect of rainfall is dramatic 
compared to temperature increases, which is different from the other studied 
series. The value of the slope calculated for temperature and rainfall using 
multiple linear regression model is 7 and 9, respectively, which in terms of sign 
and the values are consistent with the results of the Bayesian quantile regression 
model. 

 
 

 

 

 

  
Fig. 5. Results of Bayesian quantile and multiple linear regression models for the summer 
series. 
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In autumn, the slope for rainfall is in the range (6–25), which means that the 
relationship between the rainfall and flow volume is direct in all quantiles, and a 
remarkable amount of impact is observed in the upper quantile (Fig. 6). It is 
important to note that the increasing trend of the rainfall-related slope disappears 
in the upper quantiles, which may be due to the significant impact of other 
variables on autumn flow volume. The slope range for temperature in this season 
is (1–4), which means that in autumn, the relationship between the temperature 
and flow volume is generally similar to the relationship between the rainfall and 
flow volume, with the difference that the intensity of the impact of rainfall is far 
greater than that of the temperature. The differences between the magnitudes of 
rainfall and temperature in the middle and upper quantiles are far more significant 
than in the lower quantiles. In a multiple linear regression model, the slopes for 
temperature and rainfall are 7 and 20, respectively. The linear regression model's 
slope sign in autumn is similar to the Bayesian quantile regression model results. 
It should be noted that the slope values for temperature and rainfall in the multiple 
linear regression model are outside and inside the range obtained from the 
Bayesian quantile regression method, respectively. 

 
 

 

 
 

   
 

  
Fig. 6. Results of Bayesian quantile and multiple linear regression models for the autumn 
series. 
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Examination of winter data reveals that the values of slopes for rainfall are 
in the range (9–41), and in other words, the effect of rainfall on flow volume is 
direct (Fig. 7). However, the magnitude of this effect in the middle quantiles is 
significantly higher than that of the upper and lower quantiles in this respect, and 
it behaves almost like spring. The values obtained for the temperature slopes are 
also in the range ((-12) –0). The effects of temperature on flow volume are direct 
in the lower quantiles and indirect in the upper quantiles. The intensity of this 
effect increases with increasing the values of quantiles. Comparison between the 
magnitude of the effect of rainfall and temperature on the volume of winter flow 
shows that rainfall has more effect than the temperature, and the critical point is 
that the most significant difference between the magnitude of the effect of these 
two variables occurred in the middle quantiles, which behave similarly to spring 
data. The slope obtained from the multiple linear regression model for 
temperature and rainfall in winter is -8 and 28, respectively. Comparison of these 
values with the range of values recorded in the Bayesian quantile regression 
model indicates a quantitative agreement between the results of these two models. 

 
 

 

 

 
 

    
 

  

Fig. 7. Results of Bayesian quantile and multiple linear regression models for the winter 
series. 
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A comparison between the multiple linear regression and Bayesian quantile 
regression results was presented in the section above. Investigating these results 
indicates that the behavior between the flow volume and temperature and rainfall 
variables in different quantiles may be quite different. This difference can be seen 
in the magnitude of the slope value and in the slope sign of the regression lines. 
This issue is fundamental in hydrological estimates, because it shows that the 
value of rainfall and temperature variables varies in different quantiles on the 
volume of flow, and this difference is significant in some cases. 

 

4. Conclusion 

The volume of river flow is significantly affected by hydroclimatic factors such 
as rainfall and temperature. The multiple linear regression model is a well-known 
model in hydrological and climatological studies used to investigate the effect of 
independent variables on dependent variables, but this model has its limitations. 
In this study, multiple linear regression and Bayesian quantile regression models 
were used to investigate the effect of rainfall and temperature on river flow 
volume. Data belonging to the Qareh-Sou basin area in northern Iran were used 
in five (annual, spring, summer, autumn, and winter) series for this study. 
According to the results of the calculations, the following can be considered a 
general conclusion of this research.  

Comparison between the magnitude of the effect of rainfall and temperature 
in different series indicates that in spring, the effect of temperature on flow 
volume is greater than the effect of rainfall, while in the annual, autumn, winter, 
and summer series, the effect of rainfall on flow volume is much greater than that 
of the temperature .The effect of rainfall and temperature variables on flow 
volume in different quantiles in terms of value and sign can significantly change.  
The results obtained from the multiple linear regression model differ from the 
results obtained from the application of Bayesian quantile regression for the 
quantile 0.5 in value and in some cases in the sign, which means that the only 
application of multiple linear regression models alone can lead to erroneous 
analysis. The differences between the plane fitted by multiple linear regression 
with the planes fitted by Bayesian quantile regression in the upper and lower 
quantiles are enormous. Therefore, the multiple linear regression model has many 
limitations in studies related to extreme river flows. In the annual, autumn, winter, 
and spring series, with increasing the values of quantiles, the effect of rainfall on 
flow volume decreases, which may be because of extreme flows. Other variables 
such as previous soil moisture, soil cover, and land use are influential. In summer, 
a different pattern is seen so that with increasing the values of quantiles, the effect 
of rainfall on flow volume increases. This result may be since river flow in 
summer is generally of the base-flow type, and therefore, the amount of rainfall 
has a significant effect on flow volume in upper quantiles. 
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