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Abstract— This study aims to estimate and evaluate the characteristic behavior of 
sunshine duration for long-term records. Sunshine duration and other climate variables such 
as cloudiness, precipitation, relative humidity, etc., have been measured in meteorological 
stations for a long time all over the world. But in some cases, such as missing data or 
unavailable station, the estimation of sunshine duration play a crucial role. Statistical 
models can be used to predict the sunshine duration over climate variables. To evaluate the 
behavior of sunshine duration, several climate variables were analyzed for different time 
scales. The data used in this study were collected from a ground-based meteorological 
station. In the first, all data were arranged according to different time scales as monthly, 
seasonal, and annual average values. Prediction models were constructed for each time 
scale. This study used multiple linear regression (MLR) to build the models and the Pearson 
correlation analysis to determine the relations between the climate elements. The created 
models for estimating sunshine duration were validated as well. According to the results, 
MLR can be utilized and recommended for the prediction of the sunshine duration over 
climate variables. 
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1. Introduction 

Sunshine duration, which is a key element for solar radiation, has been widely 
studied over the recent years. The energy that comes from solar radiation is clean 
and environmentally friendly. Sunshine duration is highly related to solar 
radiation via the Angström-Prescott model that is utilized for predicting the 
amount of daily global solar radiation.  

The measurement of sunshine duration is made pointwise at meteorological 
stations. In places, where there is no station and no measurement can be made, the 
sunshine duration values are estimated using different methods such as regression 
analysis and interpolation techniques. Sunshine duration is correlated to climate 
variables in the atmospheric environment. Some researchers used climate 
variables to determine their relationship to sunshine duration and to estimate the 
value of sunshine duration. An empirical formula was presented to estimate the 
sunshine duration using the cloud amount data (Reddy, 1974). Similarly, 
Stanghellini (1981) developed an empirical formula to predict the monthly 
sunshine duration via daily mean cloudiness values. Chagnon (1981) determined 
that a high amount of cirrus-type clouds originating from jet planes caused a 
decrease in sunshine duration. Sunshine duration is negatively related to 
cloudiness (Angell et al., 1984; Essa and Etman, 2004; Hoyt, 1977; Palle and 
Butler, 2001; Robaa, 2008; Sanchez-Lorenzo et al., 2009; Weber, 1994; You et 
al., 2010). Besides, similarly to cloudiness, relative humidity was also found as 
negatively correlated to sunshine duration (Aksoy, 1999; Yang et al., 2009a; You 
et al., 2010; Zateroglu, 2021a). Furthermore, sunshine duration was declared that 
positively correlated with wind speed (Yang et al., 2009a, 2009b). Additionally, 
Sanchez-Lorenzo et al. (2009) expressed a positive relationship between sunshine 
duration and atmospheric pressure. Some studies were shown that sunshine 
duration was negatively related to precipitation (Yang et al., 2009a; You et al., 
2010; Zateroglu, 2021a). Aksoy (1999) evaluated the changes in sunshine duration 
over the changes in other climate parameters for Ankara in Turkey. Yildirim et al. 
(2013) investigated the trends of observed sunshine duration data and found a 
decrease in sunshine duration due to anthropogenic air pollution. Furthermore, air 
pollutants such as particulate matter and sulfur dioxide influence the sunshine 
duration and are associated with environmental parameters in the atmospheric 
periphery over urban areas (Zateroglu, 2021b, 2021c and 2022). Additionally, 
particulate matter and sulfur dioxide decrease the amount of sunshine duration 
(Zateroglu, 2021a). Also, the Pasquill–Gifford–Turner (PGT) scheme, which is 
used in predicting vertical and horizontal dispersion of a plume in air pollution 
models, considers the steady-state atmospheric conditions such as the quantity of 
solar radiation, fractional cloudiness, horizontal surface wind speed, and also 
vertical temperature gradient (USEPA, 1993; Venkatram, 1996). The air 
pollutants reflect and scatter solar radiation and then reduce the surface 
temperature. Sunshine duration is related to solar radiation with the Ansgtröm-
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Prescott formula which is used for estimating the global solar radiation; so 
sunshine duration is associated with air pollutants (Zateroglu, 2022). 

Sunshine duration is measured at meteorological stations but anyway, in 
some cases, measurements cannot be done due to some conditions such as remote 
areas, geographical problems, and not existing or insufficient stations. Different 
methods have been used to predict climate elements in climatological studies. 
Linear regression analysis was used to estimate sunshine duration (Stanghellini, 
1981). This method was preferred in terms of compatibility with climate data, 
ease of operation, and efficient outcomes. Sunshine duration data were obtained 
from the Campbell-Stokes instrument. This equipment records the sunshine data 
by burning a specific card upon which sun rays were focused via a glass sphere 
of the sunshine recorder (WMO, 1996). 

The main purpose of the present study was to gain the prediction models for 
sunshine duration over a statistical approach. Several climate variables were used 
as variables in building models. This study focuses on the 1961–2010 period. 
Monthly mean values of daily climate elements were taken for estimating the 
sunshine duration measured by a ground-based meteorological station. 
Furthermore, the accuracy of the empirical models obtained from the statistical 
analysis was evaluated via validation parameters of the regression. Finally, 
performance indices were implemented for the suitability of the prediction 
models. The findings were discussed and interpreted over the results of validation 
indicators. 

2. Study area and data 

This study was conducted for Kocaeli in the northwestern region of Turkey. The 
province is located between 29°22'E–30°21'E longitudes, 40°31'N– 41°13'N 
latitudes at 76 m altitude. There are intensive industrial activities and 
transportation facilities in the area. The population of the urban area is continually 
increasing as a result of developing industrialization. In the province, a temperate 
climate prevails on the Izmit Gulf coasts and the Black Sea coast, and a harsher 
climate prevails in the mountainous areas. It can be said that the climate of Kocaeli 
constitutes a transition between the Mediterranean climate and the Black Sea 
climate. In the city center, summers are hot and less rainy, and winters are rainy, 
snowy, and cold from time to time. There are some differences between the 
climate of Kocaeli's coasts facing the Black Sea and the coasts facing the Izmit 
Gulf. While sometimes sweltering heat is experienced on the gulf coasts in 
summer, the Black Sea coasts are cooler. According to the long-term records, the 
annual mean maximum air temperature is 19.8 °C, the annual mean minimum air 
temperature is 10.8 °C, the annual average monthly precipitation is 815.2 mm, 
annual average rainy days is 150.1, the number of annual mean sunshine duration 
is 5.7 hour, the annual average relative humidity is 71.7%, and the annual mean 
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wind speed is 1.6 m/s. The average annual precipitation on the Black Sea coast 
exceeds 1,000 mm. This amount decreases in the south; and falls below 800 mm 
(784.6 mm). On the slopes of the mountains facing the gulf, the climate is similar 
to the Black Sea coast. The amount of precipitation is also different in this section. 
Winds blow from the north and northeast in winter and from the northeast in 
summer. 

In the present study, daily values of climate elements such as sunshine 
duration (SD), cloudiness (CLD), relative humidity (RHUM), wind speed (WS), 
precipitation (PREC), evaporation (EVAP), atmospheric pressure (PRES), 
minimum air temperature (TMIN), and maximum air temperature (TMAX) were 
obtained from the ground-based observation station at Izmit/Kocaeli. The 
measurements were realized by the Turkish State Meteorological Service 
(TSMS). Monthly average values of climate variables were computed over daily 
data. The values of relative sunshine duration were calculated for prediction 
models. The arranged data were analyzed by using a statistical approach, then the 
obtained statistical models were validated. 

3. Methods 

The relative sunshine duration RSD is defined as the ratio of the measured (S) and 
maximum possible daily (So) sunshine duration and its value varies between 0 and 
1. So is calculated using the formula as follows (Duffie and Beckman, 1991; 
Goswami, 2015; Kalogirou, 2014): 

 
 𝑆଴ = ቀ ଶଵହቁ 𝑐𝑜𝑠ିଵሺ−𝑡𝑎𝑛𝛿𝑡𝑎𝑛𝜑ሻ , (1) 
 
 𝛿 = 23.45 ∗ 𝑠𝑖𝑛 ൬ଷ଺଴ଷ଺ହ ሺ284 + 𝑑ሻ൰ ,  (2) 
 

where 𝜑 is the latitude angle (-90≤ φ ≤+90) and depends on the location of 
interest, 𝛿 defines the solar declination angle between the equatorial plane and 
incoming solar rays, and 𝑑 determines the number of days of the year (begins 
from January 1). 

The Pearson correlation coefficient is a scale which denotes the strength of 
the linear correlation between variables. This metric determines not only the 
quantity but also the direction of the relation. It is computed as follows: 

 
             𝑟൫𝑠௜ , 𝑠௝൯ = ஼௢௩൫௦೔,௦ೕ൯ఙሺ௦೔ሻఙ൫௦ೕ൯    , (3) 

 
where 𝑠௜ and 𝑠௝ are the measured values of the two climate variables, 𝜎ሺ𝑠௜ሻ and 𝜎൫𝑠௝൯ are the standard deviations, and 𝐶𝑜𝑣൫𝑠௜ , 𝑠௝൯ denotes the covariance of 𝑠௜ 
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and 𝑠௝. 𝑟൫𝑠௜ , 𝑠௝൯ demonstrates the correlation coefficient between the RSD and 
either climate variable. According to value of the Pearson correlation coefficient, 
the relations are categorized as low (value in 0.0–0.49), moderate (value in 0.5–
0.69) and high (value in 0.7–1.0). 

Regression-based techniques have been utilized in the estimation studies of 
climate parameters. To build the models for the climate and the other atmospheric 
elements, the multiple linear regression (MLR) method is commonly preferred for 
estimation among the several statistical methods. In this statistical approach, the 
method processes the dataset that fit the normal distribution. Climate data is 
appropriate for this analysis. MLR represents the relationships between dependent 
(response) and independent (predictor or explanatory) variables. In this study, RSD 
is the dependent variable, the other climate elements are the independent variables. 
The method reveals the number of changes in RSD as a percentage that is explained 
by other climate variables. The relationship between dependent and independent 
variables obtained from MLR analysis is defined as a mathematical model: 

 
 Y = a0 + a1X1 + a2X2 + ………..+ arXr + Ɛ  , (4) 

 
where Y expresses the dependent variable which consists of a measured data 
matrix with dimension (n x 1), n is the number of measurements, X1, X2, ……, Xr 
define the independent variables, X determines the measured data matrix with 
dimension (n × r), r denotes the number of independent variables, ao denotes the 
constant, a1, a2, ……., ar demonstrate the regression coefficients, a is the 
coefficient matrix with dimension (r × 1), Ɛ determines the predicted error term. 
To minimize the error term, the values of constant and regression coefficients are 
computed by the least squares method utilizing the coefficient matrix a, which is 
determined by formula a = (XTX)-1(XTY). XT is the transpose of matrix X. The 
significance levels of constant and regression coefficients are determined over the 
t value and F distribution. In MLR analysis, the accuracy of the models is judged 
by two indicators named the coefficient of determination (R2) and the standard 
error of estimation (SEE). R2 denotes a measure of how well the predicted model 
fits the data used. It is expressed as the percent value changes from 0 to 1. SEE 
gives the amount of difference between actual and estimated values. 
 
                𝑅ଶ = 1 − ∑ሺ௉ೖିெೖതതതതതሻమ∑ሺெೖିெೖതതതതതሻమ  , (5) 
 

                 𝑆𝐸𝐸 = ට∑(ெೖି௉ೖ)మ௡ିଶ   , (6) 
 
where 𝑃௞ and 𝑀௞ determine the predicted and measured values, respectively, and 
n is the number of measurements. The level of the confidence interval was taken 
into account as 95% in constructing the empirical models. 
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To be evaluated on the same scale, all climate data were standardized before 
constructing the figures. The values of climate variables were transformed to 
normalized values (vary between 0 and 1) concerning the following formula: 

 
                𝐼௜ = ூೕିூ೘೔೙ூ೘ೌೣିூ೘೔೙   , (7) 

 
where 𝐼௝ expresses the observed value, 𝐼௜ determines the normalized value of 𝐼௝. 𝐼௠௜௡ is the minimum value and 𝐼௠௔௫ is the maximum value of the related dataset. 

To verify the suitability of the prediction, some error terms are applied to the 
built models. The widely used performance indices, the root mean square error 
(RMSE), mean bias error (MBE), mean absolute error (MAE), percentage mean 
absolute error (MAPE), normalized mean square error (NMSE), fractional bias 
(FB), and index of agreement (IOA) were utilized to interpret the accuracy of the 
twelve models for months. These seven indices were calculated by the following 
formulas: 

 

 𝑅𝑀𝑆𝐸 = ට∑ (௉ೖିெೖ)మ೙ೖసభ ௡  , (8) 
 
 𝑁𝑀𝑆𝐸 = (ெೖି௉ೖ)మതതതതതതതതതതതതതതெೖതതതതത∗௉ೖതതതത    , (9) 
 
 𝑀𝐵𝐸 = ∑ (௉ೖିெೖ)೙ೖసభ ௡   , (10) 
 
 𝑀𝐴𝐸 = ∑ |௉ೖିெೖ|೙ೖసభ ௡  , (11) 
 
 𝑀𝐴𝑃𝐸 = ଵ଴଴௡ ∑ |௉ೖିெೖ|ெೖ௡௞ୀଵ   , (12) 

 
 𝐹𝐵 = (ெೖതതതതതି௉ೖതതതത)଴.ହ∗(ெೖതതതതതା௉ೖതതതത) , (13) 
 
 𝐼𝑂𝐴 = 1 − ∑ (௉ೖିெೖ)మ೙ೖస∑ (|௉ೖିெഥೖ|ା|ெೖିெഥೖ|)మ೙ೖసభ   , (14) 

 
where 𝑃௞, and 𝑀௞ denote the predicted and measured values respectively, 𝑀௞തതതത 
determines the mean value of the measured values, and n defines the number of 
measurements. 

The performance indices shown in Eqs. (8)-(14) may be used to evaluate the 
efficiency of the prediction models. Commonly, as much as small (i.e., close to 
zero) for the value of RMSE, MBE, MAE, MAPE, NMSE, and FB, but as far as 
big (i.e., near 1) for the value of IOA are acceptable for the success of the 



291 

predictions. The values of FB are limited by -2 to +2. Positive values of FB 
describe a constructed model under-estimation, and the negative values describe 
a constructed model over-estimation. 

To determine the distribution of climate variables, one-sample Kolmogorov-
Smirnov test was implemented on a dataset for the normality test. The SPSS 
(Statistical Package for Social Science) package program was utilized to examine 
the statistical analysis. 

4. Results and discussion 

Pearson correlation analysis was used to reveal the statistically significant 
correlations between relative sunshine duration and climate variables. The values 
shown in Table 1 were expressed in the directions such as positive and negative, 
and magnitudes of the relations for all months, i.e., from December to November 
(DE, JA, FE, MR, AP, MA, JN, JL, AU, SE, OC, NO). For EVAP, there were no 
available (NA) data for the months JA, FE, and MR. According to Table 1, RSD 
was correlated with CLD, RHUM, and PREC negatively, whereas it was 
correlated with WS, EVAP, PRES, TMIN, and TMAX positively despite the 
ignored exception cases. The statistically significant correlation coefficients were 
represented in bold in Table 1. In all months, CLD, RHUM, and PREC (except 
MR) have significant correlations with RSD on moderate and high levels for CLD, 
and low and moderate levels for RHUM and PREC. RSD was associated with WS 
and TMAX on weak levels, and with PRES on weak and moderate levels. 

 
 

Table 1. Pearson correlation matrix for RSD 

Time 
scale CLD RHUM WS PREC EVAP PRES TMIN TMAX 

DE -0.674** -0.443** -0.01 -0.334* 0.075 0.500** -0.093 -0.009 
JA -0.725** -0.336* 0.002 -0.500** NA 0.517** -0.069 -0.239 
FE -0.749** -0.415** -0.125 -0.570** NA 0.251 0.214 0.277 
MR -0.834** -0.620** -0.154 -0.014 NA 0.245 0.071 0.349* 
AP -0.844** -0.596** 0.021 -0.500** 0.437** 0.406** 0.119 0.197 
MA -0.796** -0.679** 0.114 -0.527** 0.772** 0.176 0.028 0.281* 
JN -0.775** -0.682** 0.194 -0.387** 0.608** 0.26 -0.095 0.278 
JL -0.718** -0.602** 0.117 -0.493** 0.583** 0.023 0.043 0.163 
AU -0.866** -0.671** 0.305* -0.517** 0.679** -0.087 0.103 0.449** 
SE -0.808** -0.482** 0.245 -0.488** 0.735** -0.02 0.128 0.242 
OC -0.784** -0.631** 0.352* -0.463** 0.777** -0.042 0.279 0.427** 
NO -0.831** -0.617** 0.064 -0.534** 0.412* 0.001 0.279 0.329* 

  * Correlation is significant at the 0.05 level (p<0.05) 
** Correlation is significant at the 0.01 level (p<0.01) 
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Besides, the variations of monthly correlation coefficients between RSD and 
each climate parameter were plotted in Fig. 1. It was seen that the Pearson 
correlation coefficients for CLD and RHUM varied similarly. Additionally, the 
changes in the correlation coefficient for TMIN and TMAX were shown as nearly 
close characteristics. The correlation coefficients of EVAP suddenly began to 
decrease from two months, MA and OC. For PREC, the coefficient sharply has a 
minimum value in MR. The highest statistically significant correlations were 
found for CLD in AU as high, RHUM in JN as moderate, WS in OC as low, PREC 
in FE as moderate, EVAP in OC as high, PRES in JA as moderate, TMAX in AU 
as low. 

 

 
Fig. 1. Variations of correlation coefficients between RSD and each climate variable. 

 

 

 
The monthly variations of climate variables were represented as normalized 

values in Fig.2 (a-h). The normalized values of related climate variables were 
given below the table. As seen in Fig.2. a, b, RSD has high values in JN, JL, and 
AU and low values in DE, JA, and FE contrary to CLD and RHUM. RSD was 
changed reversely with CLD and RHUM. When RSD increased/decreased, CLD 
and RHUM decreased/increased. PREC and PRES behaved similarly against RSD 
as changed oppositely (Fig. 2. c, d). 

The characteristics of monthly TMAX and TMIN had close behavior to the 
changes in RSD (Fig.2. e, f). Although some monthly data were missing, the 
variations in EVAP was completely compatible with RSD (Fig. 2. g). According 
to Fig. 2 h, the variation of WS showed different features compared to RSD. The 
amount of change in the increasing and decreasing behaviours of WS was not in 
the same portion as in RSD.  
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(a) cloudiness 

 
(b) relative humidity 

 
(c) precipitation 

 
(d) atmospheric pressure 

 
Fig. 2. Monthly normalized values for the RSD and the climate variables.  
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(e) maximum air temperature 

 
(f) minimum air temperature 

 
(g) evaporation 

 
(h) wind speed 

 
Fig. 2. Continue 
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To obtain a quantitative prediction of RSD, MLR analysis was performed. 
From this analysis, twelve empirical models were derived to estimate the RSD 
over several climate variables (Table 2). To specify the best predictors, the 
stepwise regression technique, which is one of the MLR methods, was 
implemented on the dataset. The superiority of this method was that the estimation 
of RSD was gained by statistically significant climate variables in the analysis. 
The order of the variables written in the prediction models also indicated their 
order of importance. Concerning Table 2, the best predictor for all months was 
CLD except for OC and EVAP. The sequel of sequencing could be expressed for 
the winter months as WS and PREC for DE; and PREC and WS for JA and FE. 
In MR, CLD was accompanied by RHUM and PRES. EVAP was in second-order 
in AP and MA, subsequently for TMIN and RHUM, respectively. For the 
remaining months, RHUM, PREC, TMIN, and EVAP were the second-order 
predictors that explain the RSD. 

 
 
 
Table 2. Prediction models for RSD 

Month Model R R2 AdjR2 SEE 

JA 0.6397-0.0581*CLD-0.0007*PREC+0.0491*WS 0.842 0.709 0.685 0.04454 
FE 0.7576-0.0696*CLD-0.0011*PREC+0.0465*WS 0.902 0.814 0.800 0.04232 
MR -4.0243-0.0496*CLD-0.0062*RHUM+0.0051*PRES 0.885 0.784 0.767 0.03772 
AP 0.61-0.0514*CLD+0.0014*EVAP-0.0076*TMIN 0.892 0.795 0.775 0.03546 
MA 0.7458-0.0479*CLD+0.0015*EVAP-0.0028*RHUM 0.913 0.833 0.817 0.03237 
JN 1.0879-0.0539*CLD-0.0044*RHUM 0.878 0.772 0.758 0.03254 
JL 0.8644-0.0618*CLD-0.0006*PREC 0.820 0.672 0.653 0.04030 
AU 1.1272-0.0889*CLD-0.0109*TMIN 0.886 0.785 0.769 0.02824 
SP 0.5268-0.0447*CLD+0.0022*EVAP 0.873 0.762 0.748 0.03622 
OC 0.4889+0.0031*EVAP-0.0462*CLD 0.906 0.821 0.810 0.0358 
NV 1.2586-0.0585*CLD-0.0074*RHUM 0.921 0.849 0.838 0.03866 
DE -7.5471-0.0597*CLD+0.0677*WS+0.008*PRES 0.798 0.637 0.609 0.04640 

 
 
 
To achieve the accuracy of the prediction models, the value of R2 is the best 

scale to indicate the success of the linear regression models. Mostly, R2 and 
adjusted (Adj) R2 were evaluated together to interpret the models. If the two 
values were close to each other, it was declared that the constructed model was 
appropriate. According to Table 2, R2 and AdjR2 values were nearly close to each 
other, so all models could be expressed as appropriate models. The calculated R2 
values were obtained as generally high levels except for JL and DE as moderate 
ones. For all time scales, SEE values were gained as small values desired for the 
suitable models. 
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To confirm of the concluded empirical models, the monthly mean values of 
RSD were computed for the period mentioned above. For either month, the 
predicted RSD value was calculated over the related climate elements by using 
the deduced model. Predicted and measured values of RSD were compared by 
implementing the performance indices (Table 3). The lower the RMSE, MBE, 
MAE, MAPE, NMSE, and FB and the higher the IOA, the smaller the model error 
and the preferable the estimation performance. The performance indices showed 
that the obtained regression models were appropriate to estimate the RSD for 
given time scales. 

 
 
Table 3. Statistical indicators 

Term RMSE MBE MAE MAPE NMSE FB IOA 
JA 0.06218 0.01591 0.04369 9.17987 0.05805 0.04387 0.82250 
FE 0.06297 0.02162 0.03555 6.64318 0.04567 0.11522 0.88391 
MR 0.06187 0.01492 0.04013 7.27445 0.03354 0.04414 0.82524 
AP 0.04978 -0.00845 0.03684 3.21047 0.01450 -0.00259 0.86526 
MA 0.04064 0.00443 0.03166 2.34710 0.00641 -0.00486 0.91476 
JN 0.03373 0.00291 0.02714 1.84488 0.00320 -0.01214 0.90923 
JL 0.04618 -0.00643 0.03628 1.98324 0.00531 -0.02072 0.84372 
AU 0.04553 0.00776 0.03206 1.93990 0.00488 -0.00332 0.89146 
SP 0.048 -0.00819 0.03694 2.30729 0.00718 -0.03572 0.86043 
OC 0.06071 0.00194 0.03976 3.88605 0.02006 -0.04139 0.84605 
NV 0.05497 0.0000021 0.04073 4.67938 0.02273 -0.01660 0.89559 
DE 0.05748 -0.02059 0.04595 7.41340 0.05761 -0.15991 0.77577 

 
 

5. Conclusıon 

In this study, the statistical modeling of the sunshine duration was implemented 
because of its importance in many applications, especially in predicting solar 
radiation. This study presents an analysis of the estimation of the monthly mean 
sunshine duration. The MLR analysis method is widely used in estimating the 
climate variables. Correlation analysis expresses the relations as strength and 
direction between RSD and climate elements mentioned as CLD, RHUM, WS, 
PREC, EVAP, TMIN, and TMAX. RSD was correlated with CLD, RHUM, and 
PREC negatively, while with WS, EVAP, PRES, TMIN, and TMAX positively. 
The level of strength of the relations differed as weak, moderate, and high order 
according to the time scales. Further, the constructed prediction models were 
obtained as compatible with the climate elements. Climate variables selected in 
the models explained the RSD successfully. Additionally, some cases may affect 
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the accuracy of prediction models. For instance. measurements cannot be made 
accurately due to equipment calibration problems or climatic conditions. RHUM 
or/and PREC can affect the sunshine recorder and the sensitivity of the equipment. 
This may cause inaccurate measurements of sunshine duration. Besides, it should 
be noted that the amount of CLD is measured as visual observations by the 
observer, and this may cause measurement errors. Finally, the results for the 
statistical indicators demonstrated that the MLR method can be used for 
estimating the sunshine duration data for a specific location accurately. 

Furthermore, according to the Pasquill-Gifford-Turner protocol, solar 
radiation. vertical air temperature gradient, CLD, and WS are highly associated 
with air pollutants; so air pollutants may affect the sunshine duration and can 
cause variations in its quantity because of the relationship between sunshine 
duration and solar radiation.  

Additonally, the North Atlantic Oscillation (NAO) affects the region of the 
Black Sea. The NAO influences climate parameters, especially rainfall and air 
temperature. Therefore, because of the interactions between sunshine duration and 
other climate elements. NAO may influence the amount of sunshine duration in 
Kocaeli. 
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