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Abstract— Certain types of medical meteorological phenomenontransitions can have a 
significant deteriorating effect on road safety conditions. Hence, a system that is capable of 
warning road users of the possibility of such conversions can prove to be utterly useful. Vehicles 
on different levels of automation (i.e., ones equipped with driver assistance systems – DAS) 
can use this information to adjust their parameters and become more cautious or warn the 
drivers to be more careful while driving. In this paper, we prove that identifying the critical type 
of weather front transition (i.e., no front to unstable cold front) is possible based on locally 
observable meteorological information. We present our method for classifying weather front 
transitions to non-critical versus critical types. Our developed machine learning model was 
trained on a dataset covering 10 years of meteorological data in Hungary, and it shows 
promising results with a recall value of 86%, and an F1-score of 60%. 

As the developed method will form the basis of a patent, we are omitting key 
components and parameters of our solution from this paper. 
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1. Introduction 

In recent years, autonomous vehicle technology has seen an unprecedented 
scrutiny. However, full self-driving vehicles have still yet to take over the 
public roads in most parts of the world. The levels of vehicle autonomy is 
described in SAE J3016 (2014). On lower levels lie cars with less complex 
automation features, i.e., driver assistance systems and advanced driver 
assistance systems. A very important feature of such vehicles is the capability 
to improve their navigation or at least give instructions to their human drivers 
– or intervene in some well justifiable cases above level 1 of the six levels of 
vehicle autonomy. 

One key component of driving safety comes from the steady vigilance of the 
drivers. This ensures that if necessary, the driver is capable of successfully 
maneuvering unexpected and dangerous road situations. Bad environmental 
conditions often require the drivers to be more focused. A solution that is capable 
of warning drivers of the presence of traffic-influencing circumstances are 
therefore an essential part of modern driving assistance systems, self driving 
vehicles, and traffic management solutions. 

Weather conditions and especially weather front transitions can negatively 
effect the vigilance of road users, and thus, they are a fundamental consideration 
for designing such a system. Learning the current (daily) medical meteorological 
phenomena can currently be accomplished by receiving outputs from expert 
analyses. This is often not readily available for public use and can be significantly 
delayed compared to the timing expectations of a low latency traffic management 
system. 

In this paper we present (i) our dataset that was used for training and (ii) a 
novel machine learning (ML) solution that is capable of yielding suggestions for 
critical medical meteorological transitions. The paper is constructed as follows: 
In Section 4.1 we introduce the scientific background of our research. Then in 
section 2 we present the used datasets and the methods employed in our 
classification solution. We showcase our results in section 3, then discuss those 
in section 4 giving an outlook to our future aims in this subject in subsection 4.1. 

1.1. Previous work 

Weather conditions have a significant direct effect on traffic safety. This is 
predominantly caused by the effect that precipitation and temperature changes 
have on visibility and the friction properties of vehicles’ tyres and the road 
surfaces (Andrey et al., 2001; Becker et al., 2022). Previous research has also 
argued that medical meteorological conditions also have an indirect negative 
effect on the frequency of road accidents through negatively influencing humans’ 
vigilance (Örményi, 1975). 
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In our previous work (Szántó and Vajta, 2019b), we designed a statistical 
analysis for the inspection of whether this decrease in driver vigilance causes 
growth in road accidents. For this, we analysed different front transition types in 
Hungary: 

– no front to unstable cold front; 
– no front to stable cold front; 
– no front to stable warm front; 
– no front to unstable warm front; 
– unstable cold front to no front; 
– stable warm front to no front; 
– unstable warm front to unstable cold front;  
– stable cold front to unstable cold front. 

We successfully showed that there was a significant connection between the 
transition from no front to unstable cold front, the number of road accidents 
increased both within and outside city limits in Hungary for the analysed time 
window, i.e., January 1, 2001–December 31, 2010. In that work, we also proposed 
an algorithm that allows for information related to medical meteorological 
phenomenon transitions to be yielded from local meteorological measurements. 
For this, we proposed a hand-crafted algorithm, whose parameters were tuned 
empirically in order to effectively suggest a flag that corresponds to the presence 
of an unstable cold front. 

In our previous paper (Szántó and Vajta, 2019b), we also suggested that such 
a hazard attribute can be used in an intelligent traffic control system that is capable 
of warning vehicle operators (autonomous agents or humans) of worsened traffic 
safety conditions. A framework that is capable of hosting such information is 
introduced in (Szántó and Vajta, 2019a). A similar solution is proposed by Kavas-
Torris et al. (2021), wherein the authors define a system for vehicles connected 
to a network that offers information of environmental information gathered by an 
unmanned aerial vehicle (UAV). Among others, the broadcast information 
includes data on weather fronts. 

The usage of ML techniques for the prediction of weather circumstances 
have seen interest in the last few years (Singh et al., 2019; Dadhich et al., 2021). 
Binary weather classification problems, such as the one described in this article, 
have also been studied in depth across the scientific community (Balamurugan 
and Manojkumar, 2021). However, to the best of our knowledge, no previous 
solution focused on the usage ML-based classification of weather front 
transitions. 
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2. Data and methods 

In this section, we describe the dataset on which our analysis is based, and give 
an introduction to the methods used during the design of our solution. 

2.1. Dataset 

As one of the main goals of our research was to find possible connections between 
local meteorological data and weather front transitions, we used a dataset 
containing information collected at local meteorological stations in Hungary. The 
same dataset was previously utilized in Szántó and Vajta (2019b). For front types, 
we have obtained medical meteorological phenomena that were recorded on a 
daily basis for the time period between January 1, 2001 and December 31, 2010. 
This set of data was supplied by the Data Supply Department of the Hungarian 
Meteorological Service. The second part of our utilized dataset consists of daily 
accumulated measurements for selected meteorological observatory sites of the 
Hungarian Meteorological Service (Budapest, Pécs, Szeged, Debrecen, 
Szombathely, Győr, Nagykanizsa, and Siófok). 

Note that the original local weather dataset that was used in Vécsei and 
Kovács (2014) had an hourly resolution, but since we only managed to obtain 
weather fronts recorded on a daily basis, we accumulated the datapoints. 
Originally, the local weather dataset contained information for the time period 
between January 1, 1990 and December 31, 2010. However, for the purpose of 
the study presented in this paper, we could not make use of measurements taken 
prior to January 1, 1990, therefore, we cropped the dataset to only contain 
information starting from this date. 

As the feature-set for our ML-based classifier, we used local weather 
measurements with a few additional derived features. For the previously listed 
cities, the complete set contains daily average temperature, daily average wind 
speed, daily average atmospheric pressure, and total precipitation, as well as the 
variation of the respective values from the previous day. The feature-set also 
contains one-hot encoded precipitation types for the given days. Additional 
geographical daily mean temperature differences were calculated between 
selected city-pairs. Sign of the differences has been decided based on the 
geographical location of the compared cities. The construction of these features 
has been described in more depth in our previous paper (Szántó and Vajta, 2019b). 

As our previous results showed, the most critical front transition is from no 
front to unstable cold front state. Therefore we created a binary target variable 
whose values relate to this change dynamic: 

– The value of 0 (or False) corresponds with no front transition or no 
critical front transition;  

– The value of 1 (or True) corresponds with the critical front transition. 
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This categorization gave us a strongly unbalanced target variable. The 
empirical distribution of our target variable is shown in Fig. 1. 
 
 
 

 
 

Fig. 1. Heavily unbalanced target distribution. The vertical axis shows the number of 
transitions. True label denotes critical front transition, while False label denotes no 
critical front transition.  

 

 

 

2.2. Methods 

The resulting method presented in this report is used as the basis for a patent filing. 
Therefore, many steps of the data preprocessing pipeline, as well as the type and 
parameters of the trained ML algorithm are omitted from this publication. 

First, we randomly split the dataset into training and test subsets. We did so 
using a 90% to 10% ratio. The heavily unbalanced target variable (as shown in 
Fig. 1) made data augmentation a necessity prior to model training. For this 
purpose, we randomly oversampled and undersampled the respective portions of 
the training set (Branco et al., 2016). The result of resampling is shown in Fig. 2. 
The distribution of the target variable in the training split following resampling is 
shown in Fig. 3. 
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(a) 

 
(b) 

Fig. 2. Data distribution before (a) and after (b) data augmentation. The vertical and 
horizontal axes show randomly chosen features. True label denotes critical front 
transition, while False label denotes no critical front transition. 

 
 
For binary classification, we used three different approaches: 
– a traditional ML technique; 
– an Artificial Neural Network-based (ANN) technique; and 

– a recently published ML technique that makes use of decision trees and 
boosting. 
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Fig. 3. Augmented training data – target distribution. The vertical axis shows the number 
of transitions. True label denotes critical front transition, while False label denotes no 
critical front transition.  

 
In the interest of safeguarding intellectual property rights, technical details 

are intentionally omitted from this paper, as they constitute foundational aspects 
of a forthcoming patent application. Therefore, in the following sections of the 
paper, these will be denoted as Method 1, Method 2, and Method 3. 

Method 1 is a decision tree-based multi-class classification ensemble model. 
The approach used in this paper was proposed in the paper of Geurts et al. (2006). 
We chose this technique, as – similarly to random forest classifiers – it trains 
multiple decision trees on the training data, but it does not use bagging, and thus, 
it is less resource-sensitive, while also less prone to overfitting. 

For fitting the extra trees classifier, we used the Gini impurity to measure the 
quality of each split, with minimum 2 samples used to split an internal node. The 
model was allowed to use at most 12 features to create a split. 

We empirically tuned two hyperparameters of the model (number of 
estimators fitted and minimum number of samples at leaf) as shown in Table 1. 
For comparing the results of the individual models, we used k-fold cross-
validation and calculated the test R2 scores. 

Method 2 is a fully connected neural network with a depth of 4. It employs 
dense layers with different activation functions used in the feed forward 
connections. The simplified structure of the used ANN is shown in Fig. 4. 

For the hidden layers – l1 to l4 in Fig. 4 – , the rectified linear unit (ReLU) 
(Nair and Hinton, 2010) activation function was used, whereas in the case of the 
final connection – l4 to lO in Fig. 4 –, we employed the softmax function that yields 
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probability values for the individual output classes. For the outputs of every 
hidden layer, we used batch normalization. We aided the optimization process 
with learning rate (LR) scheduling; namely, we used step LR decay, which 
iteratively applies a division to the learning rate by a prescribed factor (γ) after a 
given number of epochs pass (S) during training. To help the generalization 
capability of our network, we used dropout. 

 
 
 
Table 1. Parameters used for fitting the Extra Trees model. Best model is shown in bold 

Number of estimators Minimum number of samples 
 at leaf 

Mean R2 test 
score 

1000 20 0.4807 
500 20 0.4810 

2500 20 0.4813 
3000 10 0.4813 
3100 10 0.4916 
3125 10 0.4810 
3250 10 0.4813 
3500 10 0.4804 

 
 

 
Fig. 4. Simplified structure of our artificial neural network. 

l1 l2lI l3 l4 lO

Input layer

Hidden layer

Output layer

Fully connected feed forward

Fully connected feed forward
with ReLU activation
Fully connected feed forward
with softmax activation
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We ran random hyperparameter sweeps using the Weights and Biases 
method (Biewald et al., 2020) finding the optimal hyperparameters for the ANN. 
We show the individual tuned parameters and the swept ranges in Table 2. We 
trained our network with each parameter-set for 200 epochs using the AdamW 
optimizer (Loshchilov and Hutter, 2017), and used the cross entropy loss for 
training and monitoring the validation performance of the model. 

The technical details of Method 3 are not given here in the interest of 
guarding intellectual property rights. 
 
 
 
 

Table 2. Parameter tuning of the artificial neural network. li denotes the number of nodes 
in the ith layer 

Tuned 
hyperparameter Sweep range Optimal value 

 min max  

Batch size 16 2048 256 

Learning rate 0.000001 0.01 0.0001 

γ 1.5 20 2 

S 10 30 15 

Dropout 10% 70% 30.58% 

l1 32 512 147 

l2 16 256 151 

l3 8 256 61 

l4 4 128 5 

 
 
 
 

3. Results 

We trained the models for all three methods on a server computer with 2 x Nvidia 
RTX 2080 Super GPUs and an Intel(R) Core (TM) i7-9700K CPU running 
Ubuntu 22.04. The dataset preparation steps and the training scripts were 
developed in python using scikit-learn (Pedregosa et al., 2011) and PyTorch 
(Paszke et al., 2019). 

As the aim of the models was to correctly classify the critical front type 
transition using binary classification, we evaluated and compared the results using 
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confusion matrices. The no front to unstable cold front transitions are deemed 
critical, since they cause significant increase of accident numbers. Hence, recall 
is the most important metric that we want to tune the classifiers for, as this metric 
indicates the ratio of false negatives (i.e., cases where a critical front transition 
was observed, but the model missed it and the output showed no critical transition) 
and all positive cases in the test set. The second most prioritized metric was 
precision, as this metric shows the ratio of false positives (i.e., the number of cases 
where no critical front transition was observed, but the model output showed a 
critical case) and all positive predictions. The results of our training are shown in 
Table 3.  

 
 
 
 
Table 3. Classification results for the trained models. Best results shown in bold 

 recall precision F1-score training time 
    (seconds) 

Method 1 68.750% 40.367% 50.867% 0.1697 

Method 2 0.000% 83.000% 0.000% 166.7136 

Method 3 85.938% 45.833% 59.782% 0.2741 

 
 
 
 
Based on the recall and precision values we clearly identified, that the best 

candidate model for classifying critical front type transitions based on locally 
measured meteorological data is Method 3. 

This result is also underpinned by the confusion matrices for each method 
shown in Fig. 5. 
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(a) 

 
(b) 

 
(c) 

Fig. 5. Confusion matrix of Method 1 (5a), Method 2 (5b), and Method 3 (5c). True label 
denotes critical front transition, while False label denotes no critical front transition. The 
horizontal and vertical axes show ground truth values and predicted values, respectively. 
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4. Discussion 

The high precision value observed for Method 2 (83%, shown in italic in Table 3) 
was presumably the result of the unbalanced target distribution of the test set. 
After further analysis of the predictions given by Method 2, it is obvious that such 
a high result was caused by the incapability of this method to find and learn the 
patterns within the training data. We also hypothesize that training that model on 
a larger dataset would increase its prediction ability. 

Moreover, having access to a larger body of input data usually results in the 
training of any ML-based algorithm less prone to overfitting, i.e., the more diverse 
the input dataset, the less likely for the model to fit its predictions precisely to the 
training data. We conjecture, that the lack of ample training data caused all three 
models to underperform to a varying extent on the test set. 

However, given that the most critical front transformation (no front to 
unstable cold front transition) was labeled as the positive case in the training data, 
our models were tuned for recall, that is, the main goal was to exhibit the highest 
possible recall values. An outstanding recall value was achieved by Method 1 and 
a satisfactory result was observed for Method 3 (see Table 3). 

4.1. Future work 

A key future development goal of our method – as mentioned several times 
through the previous sections – is to file for a patent and to protect the novelty of 
our technique. 

We would like to test the possible performance gains our methods can exhibit 
given the availability of a larger amount of training data, as we argue that such an 
improvement would enable our models to become less prone to overfitting. 

Another important opportunity for optimization could arise from more 
precise data preparation; in the current solution, feature selection for the models 
was performed heuristically. After that, feature usage was automatically 
determined by the training algorithms and the models themselves. We hypothesize 
that the models, more precisely the training processes, would substantially benefit 
from expert contributions. 
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