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Abstract— The subject of the research paper is the exploration of the potential of remote 
sensing techniques for enhanced spatio-temporal monitoring and analysis of drought 
impacts within the Sana River basin area in Bosnia and Herzegovina (B&H). The aim is to 
identify meteorological, hydrological, agricultural, and socio-economic drought 
occurrences by processing remote sensing “products”. An integral part of this aim involves 
calculating the standardized precipitation index (SPI), temperature condition index (TCI), 
vegetation condition index (VCI), and vegetation health index (VHI). Meteorological 
drought monitoring was carried out using the Climate Hazards Group InfraRed 
Precipitation with Station Data (CHIRPS) dataset processed through the Google Earth 
Engine (GEE) platform. A 42-year period (1981–2023) was compared with reference years 
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(2016 and 2017). The occurrence of meteorological drought (lack of precipitation) was 
identified, and SPI was calculated. The period with reduced precipitation and negative SPI 
values during 2016 and 2017 coincided with the pattern of decreasing water levels in the 
main stream of the Sana River, confirming the impact of meteorological drought on the 
occurrence of hydrological drought. Agricultural drought monitoring was conducted using 
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, namely 
MOD13Q1 and MOD11A2, to calculate TCI, VCI, and VHI. The results indicate negligible 
drought occurrence for 2016, while extreme agricultural drought was observed in the basin 
area for 2017. The consequences of agricultural drought on the occurrence of socio-
economic drought were examined. The results show an extreme decrease in yields of wheat, 
barley, corn, potatoes, pears, and plums during 2017 compared to 2016. The research 
contributes to a better spatio-temporal understanding of drought phenomena, and the 
presented data and results are significant for numerous practical issues related to 
monitoring, mitigation, and/or prevention of negative consequences of drought in river 
basin areas. 

Key-words: drought, hazard, remote sensing, geographic information systems, mapping, 
Sana River basin, Bosnia and Herzegovina. 

 

1. Introduction 

Drought is an exceptionally complex natural disaster (Xie and Li, 2020a). 
According to Hao and Singh (2015) and Dong et al. (2022), drought is one of the 
most common natural disasters in terrestrial ecosystems, characterized by wide 
coverage, frequent occurrences, and negative impacts, which directly or indirectly 
cause significant economic losses at regional and global levels. Drought leads to 
widespread exhaustion of natural and artificial water resources over an extended 
period (Rossi, 2000). Over the past few decades, under the influence of climate 
change, the impact of drought on agriculture, economy, and society has intensified 
(Council, 1992; Wilhite et al., 2007; Orimoloye, 2022). Drought leads to a 
negative impact on agricultural productivity, desertification, forest degradation, 
and other socio-economic problems (Li et al., 2020a,b; Xie and Li, 2020b). 

Depending on the type of drought, its impacts vary in space and time 
(Žurovec et al., 2017). According to Wilhite (1985), the following types of 
droughts exist: meteorological, hydrological, agricultural, and socio-economic. 
Meteorological droughts are closely related to reduced or lack of precipitation 
(Wilhite, 2000; Gabrić and Plavšić, 2019). According to Liu et al. (2023), 
meteorological drought, caused by insufficient precipitation, high temperatures, 
and significant evapotranspiration, can lead to water shortages, manifested 
through soil moisture deficits. Traditional monitoring of meteorological drought 
relies on meteorological data from meteorological stations (MS) (Robock et al., 
2000; Hashim et al., 2016). However, in areas with disparate distribution of MS, 
access to long-term and reliable data for monitoring meteorological drought is 
limited (Tan et al., 2017; Tian et al., 2018). Uneven spatial distribution of MS and 
discontinuous precipitation data trends are characteristic of developing countries, 
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such as Bosnia and Herzegovina (B&H). Consequently, there is a shortage of 
research concerning meteorological droughts within the borders of B&H, 
particularly related to specific geographic environments. The lack of an adequate 
number and uneven distribution of MS can be overcome by an alternative 
approach using satellite meteorological data. According to Ezzine et al. (2014) 
and Tang et al. (2020), satellite meteorological data offer the possibility of 
identifying conditions for drought occurrence on various surfaces, as well as 
suitability for monitoring large-scale droughts in real-time with high accuracy and 
implementation. Zhu et al. (2019) highlight the abundance of various satellite 
precipitation data and their wide application in meteorological drought analysis 
(Gao et al., 2018; Tladi et al., 2022; Feng et al., 2023; Kourtis et al., 2023; Torres-
Vázquez et al., 2023; Zhang et al., 2023; Oukaddour et al., 2024). According to 
the authors of this study, satellite meteorological data have not been used to 
investigate meteorological drought in the territory of B&H thus far. According to 
Wilhite (2000), meteorological drought can act as a “trigger” for the occurrence 
of other types of droughts. Lee et al. (2022) emphasize that this type of drought 
directly influences the occurrence of hydrological drought. The mentioned 
drought is traditionally detected through field observations of river flow, surface 
or groundwater levels, providing direct evidence of water scarcity (Nalbantis and 
Tsakiris, 2009; Zhu et al., 2016). 

According to Spinoni et al. (2018), there is an established consensus about 
recent trends of meteorological and hydrological droughts in Europe: in the last 
decades, southern Europe experienced increasing drought frequency and severity 
(Briffa et al., 2009; Vicente-Serrano et al., 2014; Gudmundsson and Seneviratne, 
2015; Spinoni et al., 2015a,b), with the Mediterranean region as a hotspot 
(Hoerling et al., 2012), especially in spring and summer (Spinoni et al., 2017). 
Drought has been present several times in the territory of B&H during the past 
two decades (Žurovec et al., 2017). During the period from 2000 to 2021, extreme 
drought occurred eight times: in 2003, 2007, 2011, 2012, 2013, 2015, 2016, and 
2017 (Trbić et al., 2022). Trbić et al. (2013) emphasize that in the future, a greater 
number of hot/tropical days, along with reduced precipitation and the occurrence 
of dryness or aridity, will increase the likelihood of drought in the territory of 
B&H. In this regard, the negative impacts of droughts observed in the past may 
be significant for the future, making areas where more frequent severe droughts 
are expected a very important subject of research (Spinoni et al., 2018). 

Meteorological and hydrological droughts, intensified by high temperatures, 
contribute to soil moisture deficits, thereby causing agricultural drought (Liu et 
al., 2016). Wilhite (2000) emphasizes that due to soil moisture deficits, agriculture 
is the first economic sector affected by drought, especially if the period of 
moisture deficiency is accompanied by high temperatures and windy conditions. 
By processing remote sensing “products” in the form of satellite imagery, it is 
possible to generate various indices for monitoring agricultural drought. 
Specifically, Yoon et al. (2020) highlight that for the identification, monitoring, 
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and analysis of agricultural droughts, remote sensing-based indices have proven 
to be the most helpful supplementary data due to their simplicity, low cost of 
synoptic display, and reliability. The use of indices such as the normalized 
difference vegetation index (NDVI), temperature condition index (TCI), and 
vegetation condition index (VCI) for identifying agricultural drought is globally 
recognized (Nicholson and Farrar, 1994; Kogan, 1995a; Seiler et al., 2000; Wang 
et al., 2001). The uniqueness of these indicators lies in their autonomy from 
various environmental conditions (Anyamba et al., 2001; Ji and Peters, 2003), 
allowing for effective monitoring of agricultural drought in any geographic 
environment. Agricultural drought has a significant impact on reducing 
agricultural production and yields, leading to the manifestation of socio-economic 
drought, which, according to Wilhite and Glantz (1985), involves considering the 
effects that the mentioned drought has on the supply and demand of economic 
goods such as fruits, vegetables, grains, and meat. 

The primary objective of this study is to improve drought monitoring in the 
Sana River basin (B&H) through the utilization of remote sensing techniques. 
This involves conducting integrated spatio-temporal analysis and exploring 
potential mitigation strategies. A fundamental part of this goal involves 
identifying meteorological and hydrological droughts, mapping agricultural 
drought as a causal consequence, and examining environmental impacts through 
the identification and monitoring of socio-economic drought. The research is 
based on the application of modern technologies such as Geographic Information 
Systems (GIS) and remote sensing. The presented methodology is significant for 
identifying and understanding drought as a natural disaster. The research results 
can be beneficial to relevant institutions in policy-making and planning activities 
in the areas of monitoring, prevention, and/or mitigation of the harmful effects of 
drought in the geographic environment. 

2. Study area 

The study area comprises the river basin of the Sana River, which stretches across 
the northwest of B&H [44.18° N – 45.09°N; 16.29° E – 17.09° E] (Fig. 1). The 
Sana River originates from three karstic sources on the border of the 
municipalities of Ribnik and Mrkonjić Grad. The mentioned river is a tributary of 
the Una River and belongs to the larger river basin of the Sava River with a surface 
participation of 3.55%. The length of the Sana River is 146 km, its source is 
located at an altitude of 414 m a. s. l., and its mouth at 122 m a. s. l. It is 
characterized by the Posavina variant of the pluvio-nival water regime, which is 
characterized by high water levels in April, and lower levels in August (Gnjato, 
2018). Based on data from the hydrological station (HS) Prijedor (1961–2014), 
the highest flow rates on the Sana River were recorded in the spring season (119.7 
m3/s), and the lowest in the summer season (42.6 m3/s). The total area of the river 
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basin according to the HydroSHEDS database (https://www.hydrosheds.org/) is 
3470 km2. The average elevation of the river basin is 505 m, while the average 
slope is 10.9°. Based on data from MS Novi Grad, Prijedor, Sanski Most, and 
Ribnik (1981–2023), the average annual precipitation in the river basin area is 
1043.42 mm, while the average annual temperature is 11.09 °C. According to the 
Köppen-Geiger climate classification (Kottek et al., 2016), the Sana River basin 
belongs to the Cfb climate type, which is characterized by moderately cold winters 
and warm summers. 
 
 
 
 

 
Fig. 1. Location of the study area with meteorological stations used in this study. 

 

 

 

 
The Sana River basin extends across both entities in B&H: Republic of 

Srpska (RS) and the Federation of Bosnia and Herzegovina (FB&H). It 
partially or entirely covers the following municipalities in RS: Novi Grad, 
Kostajnica, Prijedor, Oštra Luka, Banja Luka, Ribnik, Mrkonjić Grad, Krupa 
on Una, as well as municipalities in FB&H: Bosanska Krupa, Sanski Most, and 
Ključ. According to the latest population census in B&H from 2013, these 
municipalities had a combined population of 454,000 inhabitants (Agency for 
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Statistics of Bosnia and Herzegovina, 2016), which also represents the total 
population in the basin area. Based on the Corine Land Cover database from 
2018 (https://land.copernicus.eu/), concerning land use within the study area, 
built-up areas occupy 38.68 km2, arable land covers 1514.09 km2, forested areas 
cover 1830.82 km2, and water bodies cover 21.79 km2. The significant 
participation of arable land, accounting for 43.64% of the basin area, indicates 
that agriculture as the primary economic sector is exceptionally significant for the 
economic development of this geographical environment. 

3. Methods and data 

Monitoring drought in the research is based on processing remote sensing 
“products” in the form of satellite imagery. The Google Earth Engine (GEE) 
platform, based on cloud technology, was used for processing. In order to identify 
the period of meteorological drought within the research, satellite precipitation 
estimate data called Climate Hazards Group InfraRed precipitation with Station 
data (CHIRPS) were used. The mentioned data are of a global nature, with 
relatively high spatial resolution (0.05o× 0.05o ~ 5.3 km) and long-term temporal 
coverage (1981 – almost real-time) (Funk et al., 2015). Before using CHIRPS 
data, they were validated based on data from the meteorological stations. The 
validity of CHIRPS data based on MS data has been confirmed in several studies 
(Katsanos et al., 2016; Hsu et al., 2021; Alsilibe et al., 2023), and they have been 
used in drought analyses (Rivera et al., 2018; Habitou et al., 2020). At the study 
area level, CHIRPS data were previously validated in a research by Sabljić et al. 
(2023). According to the methodology of the mentioned authors, the validity 
assessment process involved comparing the average precipitation amount of 
CHIRPS and meteorological data from MS Prijedor and Sanski Most (1992–
2022). In this research, and according to the mentioned methodology, during the 
validity assessment process, meteorological data from a larger number of MS 
stations were additionally taken into account, and a longer time period was 
observed (1981–2023). Meteorological data were obtained from the Republic 
Hydro-Meteorological Institute of the Republic of Srpska (RHMIRS) and the 
Federal Hydro-Meteorological Institute of the Federation of Bosnia and 
Herzegovina (FHMIFB&H). Meteorological data from MS stations located 
within the basin area were considered, as well as data from MS stations located in 
its immediate vicinity (Table 1). The reason for including MS stations located 
outside the basin boundaries is explained by the lack of such stations at higher 
elevations within the basin. 
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Table 1. MS stations whose data were used in the validity assessment process 

Row 
number Name Location Time period Elevation (m) 

1 Novi Grad 45°05’ N; 16°37’ E 1981–2023 122 
2 Prijedor 44°97' N; 16°71' E 1981–2023 133 
3 Banja Luka 44°79’ N; 17°20’ E 1981–2020 150 
4 Sanski Most 44°46’ N; 16°42’ E 1981–2022 158 
5 Ribnik 44°40’ N; 16°81’ E 2000–2023 293 
6 Šipovo 44°28’ N; 17°09’ E 1999–2023 454 
7 Mrkonjić Grad 44°41’ N; 17°08’ E 1981–2023 570 
8 Drinić 44°50’ N; 16°46’ E 1981–2023 722 

 
Meteorological drought is characterized by a lack of precipitation, and to 

establish its occurrence, a comparison is made between the 42-year average 
precipitation (1981–2023) and the average precipitation of reference years (2016 
and 2017). Therefore, following the recommendations of the World 
Meteorological Organization, the meteorological element covering one full 
climatological cycle was observed (Lukić et al., 2021). The aim of this process is 
to identify the time period during the reference years when the precipitation was 
below the 42-year average. The time period during which a lower amount of 
precipitation than the average is observed is characterized by the occurrence of 
meteorological drought. 

The occurrence of meteorological drought was further analyzed by 
calculating the standardized precipitation index (SPI). This indicator, presented 
by McKee et al. (1993), represents the deviation z from the mean value in units of 
standard deviation. In the research, SPI was calculated based on CHIRPS 
precipitation data at the location of each pixel composite period for each year 
during the reference period (Fig. 2). The formula for calculating SPI is as follows: 

 
 𝑆𝑃𝐼௜௝௞ = ൫௉೔ೕೖି௉ഢണതതതത ൯ఙ೔ೕ , (1) 
 

where SPIijk is the z-value for the pixel (i) during timeframe (j) for year (k), Pijk is 
the precipitation value for pixel (i) during timeframe (j) for year (k), Pij is the mean 
for pixel (i) during timeframe (j) over n years, and σij is the standard deviation of 
pixel (i) during week (j) over n years. 

Meteorological drought acts as a trigger for the occurrence of other types of 
droughts. Hydrological drought arises from meteorological drought (lack of 
precipitation), often developing slowly and lasting for months, with serious 
consequences for ecosystems, the environment, agricultural production, and water 
resource systems (Van Loon, 2015). Within the scope of the study, the impact of 
meteorological drought on the occurrence of hydrological drought was established 
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through the analysis of the water level of the main stream of the Sana River. The 
average mean water level on the main stream of the Sana River was calculated, 
incorporating data from the HS Prijedor and Sanski Most for the studied time 
period (2001–2019). The average mean water level of the 18-year period was 
compared with the average mean water level of the reference years (2016 and 
2017). Months during which a lower average mean water level than the 18-year 
average was evident are characterized by the occurrence of hydrological drought. 

 

 

 
Fig. 2. Methodology for processing and monitoring meteorological and hydrological droughts. 

 
 
 
 

The time periods characterized by clear differences in the amount of received 
precipitation, negative SPI values, as well as periods with significant decreases in 
the water level of the main stream of the Sana River, represent the basic temporal 
data for the process of identification and mapping of agricultural drought at the 
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study area level. The process of mapping agricultural drought is based on the 
computation of TCI and VCI, and the results of these indices are used to calculate 
VHI (Fig. 3). The mentioned indices are computed by processing remote sensing 
data in the form of satellite data through the GEE platform. In this regard, 
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data were 
used, specifically: MOD13Q1 and MOD11A2. An overview of the characteristics 
of these satellite data is provided in Table 2 (Didan, 2021; Wan et al., 2021). 

 
 
Table 2. Overview of MOD13Q1 and MOD11A2 satellite data characteristics 

COLLECTION GRANULE – MOD13Q1 
Characteristic Description Characteristic Description 

Collection Terra MODIS Number of science dataset 
(SDS) layers 12 

Temporal resolution Multi-Day Columns/Rows 4800 × 4800 
Temporal extent 2000-02-18 – now Pixel size 250 m 

Spatial extent Global GRANULE – MOD11A2 
Coordinate system Sinusoidal Characteristic Description 

Datum N/A Number of science dataset 
(SDS) layers 12 

File format HDF-EOS Columns/Rows 1200 × 1200 
Geographic 
dimensions 1200 ×1200 km Pixel size 1000 m 

 
 
TCI represents the initial indicator of water stress and drought. It was 

developed by Kogan (1995a) using the thermal bands of the Advanced Very High 
Resolution Radiometer (AVHRR) to determine vegetation stress caused by 
temperature, as well as stress induced by excessive moisture. The input satellite 
data for calculating TCI is the MOD11A2 satellite data. The formula for 
calculating TCI according to the previously mentioned author is: 

 
 𝑇𝐶𝐼௝ = ൫்஼ூೕି்஼ூ೘೔೙൯(்஼ூ೘ೌೣି்஼ூ೘೔೙) × 100 , (2) 

 
where TCImax and TCImin are the maximum and minimum values of TCI in a multi-
year dataset. j is the TCI value of the current month in the calculation. 

VCI is applied when assessing the status of agricultural drought. Its 
component is NDVI. It was developed by Kogan (1995a, 1997). VCI estimates the 
current NDVI by comparing it with a range of values observed during previous 
years. The input data for its calculation is the MOD13Q1 satellite data. The result 
of VCI is expressed in numerical values, where lower values indicate poorer 
vegetation conditions, while higher values indicate better vegetation conditions. 
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According to Kogan (1997) and Bento et al. (2018), the calculation of VCI for 
each pixel and period during the reference years is based on the formula: 

 
 𝑉𝐶𝐼௝ = ൫ே஽௏ூೕିே஽௏ூ೘೔೙൯(ே஽௏ூ೘ೌೣିே஽௏ூ೘೔೙) × 100 , (3) 

 
where NDVImax and NDVImin are the maximum and minimum values of NDVI in 
a multi-year dataset. j is the NDVI value for the current month in the calculation. 

VHI represents an index used in monitoring agricultural drought. According 
to Bhuiyan et al. (2006), VHI takes into account local biophysics (soil and slope) 
as well as climatic conditions, making it highly applicable in monitoring drought 
in various agrometeorological regions. Prasad et al. (2006) and Kogan et al. 
(2012) emphasized that the results of VHI are highly correlated with crop yields, 
particularly during critical phases of crop growth. To be successfully calculated, 
its computation requires the integration of the results of the two previously 
mentioned sub-indices: VCI and TCI, and the final formula for calculation is: 

 
 𝑉𝐻𝐼 =  𝛼 × 𝑉𝐶𝐼 + (1 −  𝛼) × 𝑇𝐶𝐼  , (4) 
 

where α is the “weight” for measuring the contribution of VCI and TCI in 
assessing drought status. Generally, the value of α is set to 0.5 due to challenges 
arising in differentiating the contributions of surface temperature and NDVI 
during vegetation stress measurements. 
 

 
Fig. 3. Data processing methodology for identifying and mapping agricultural drought. 
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The results of the mentioned indices (TCI, VCI, and VHI) range from -1 to 1. 
Negative values indicate the occurrence of drought, while positive values indicate 
the absence of drought. In the study, following recommendations (Kogan, 1990, 
1995b) and previous research (Monteleone et al., 2020; Zeng et al., 2022), the 
standardization of these indices was performed through their reclassification into 
values from 0 to 100, in an equal number of drought categories (Table 3). 

 
 
Table 3. Categorization of drought types 

Row 
number Value Drought type 

1 < 10 Extreme drought 
2 < 20 Severe drought 
3 < 30 Moderate drought 
4 < 40 Mild drought 
5 >= 40 No drought 

 

 
The consequences of identified agricultural drought are examined through 

the occurrence and analysis of socio-economic drought. This type of drought was 
identified by analyzing statistical data on crop yields during the reference period. 
The data were obtained from the Institute of Statistics Republic of Srpska (ISRS) 
and Federal Institute of Statistics of the Federation of Bosnia and Herzegovina 
(FISFB&H). Data on yields at the municipal level within the Sana River basin 
were considered, including: Bosanska Krupa, Ključ, Sanski Most, Banja Luka, 
Novi Grad, Kostajnica, Prijedor, Oštra Luka, Ribnik, and Mrkonjić Grad. Yield 
data were compared for the reference years (2016 and 2017) for the following 
crops: wheat, maize, barley, potatoes, apples, pears, and plums, and the causes 
and consequences of this type of drought were examined. 

4. Results and discussion 

The validation of CHIRPS satellite precipitation data was performed according to 
the previously described methodology. A comparison of the average precipitation 
quantity between CHIRPS and the MS indicates a high degree of validity of the 
satellite data (Fig. 4). December is characterized by 89.40% agreement between 
satellite and real data. Five out of twelve months (April, May, September, 
October, and November) are characterized by >90% agreement, while six out of 
twelve months (January, February, March, June, July, and August) are 
characterized by >95% agreement between satellite and real data. 
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Fig. 4. Evaluation of meteorological data validity (1981–2023). 

 
 
 
 

The average annual precipitation (1981–2023) aligns with the data obtained 
from the MS stations at a rate of 94.95%, while the total precipitation matches at 
a rate of 98.19%. Previous research (Sabljić et al., 2023) assessing the validity of 
the average annual precipitation (1992–2022) for the Sana River basin resulted in 
a match of 92.63%, as well as 92.38% for total precipitation. Considering the 
inclusion of a greater number of MS stations at different altitudes, as well as the 
observation over a longer time period, led to more accurate results in the 
validation process of satellite precipitation data. Taking into account that HM data 
relates to seven points in space representing MS stations, while satellite data 
covers the entire area, along with the spatial resolution factor of satellite data, it 
is concluded that satellite data is valid for the research and monitoring of 
meteorological drought. 

According to the methodology described earlier, to identify meteorological 
drought, a comparison was made between the average precipitation for a 42-year 
period (1981–2023) and the average precipitation for the years 2016 and 2017 
(Fig. 5). During the year 2016, lower precipitation amounts (Fig. 5a) were 
identified in April (-15.27 mm), September (-19.7 mm), October (-5.85 mm), and 
December (-85.67 mm). On the other hand, during the year 2017, lower 
precipitation amounts (Fig. 5b) were identified in May (-9.21 mm), June  
(-22.57 mm), July (-20.92 mm), August (-30.85 mm), and October (-12.75 mm). 
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Fig. 5. Comparison of average precipitation amounts per month (1992–2022) with the reference 
years (2016 and 2017) 

 
 

To confirm the occurrence of meteorological drought, the SPI was 
calculated. The input meteorological data for SPI calculation are previously 
validated CHIRPS data. SPI was calculated for the years 2016 and 2017 (Fig. 6). 
The SPI values for 2016 range from -1.73 to 2.69, and for 2017, they range from 
-0.85 to 1.25. According to McKee et al. (1993), drought occurs when the  
SPI value is less than 0. During 2016, SPI <0 was identified in April (-0.75), 
August (-0.14), September (-0.21), October (-0.24), and December (-1.73). For 
2017, SPI <0 was identified in May (-0.31), June (-0.63), July (-0.85), August  
(-0.81), and October (-0.31). 

 
 

 
Fig. 6. Monthly SPI values (2016 and 2017). 
 
 
To identify hydrological drought, a comparison of the average water level 

for 18-year period (2001–2019) with the average water level of 2016 and 2017 
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was conducted (Fig. 7). During 2016, at the location of the hydrological station 
in Prijedor (Fig. 7a), lower average water levels were identified in January  
(-12 cm), April (-72.7 cm), June (-27.1 cm), September (-4.1 cm), and December 
(-94.9 cm). In the same year, at the location of the hydrological station in Sanski 
Most (Fig. 7b), lower average water levels were identified in January (-21.1 cm), 
March (-4.5 cm), April (-55.2 cm), June (-31.6 cm), July (-0.4 cm), August  
(-2.7 cm), September (-11.3 cm), November (-1.6 cm), and December (-62.3 cm). 
During 2017, at the location of the hydrological station in Prijedor (Fig. 7c), lower 
average water levels were identified in January (-80.5 cm), June (-45.7 cm), July 
(-12.4 cm), August (-12.1 cm), and October (-7.4 cm). Similarly, in the same year, 
at the location of the hydrological station in Sanski Most (Fig. 7d), lower average 
water levels were identified in January (-58.1 cm), March (-6.5 cm), April  
(-23.2 cm), May (-13.4 cm), June (-35.6 cm), July (-41.4 cm), August (-41.7 cm), 
September (-31.3 cm), October (-24.5 cm), and November (-19.6 cm). 

 
 

 
Fig. 7. Comparison of average mean water level (2001–2019) with the reference years (2016 
and 2017) at the Prijedor and Sanski Most hydrological stations. 

 
 
 

According to the results of Ducić et al. (2014), frequent occurrences of 
severe and extreme meteorological droughts have been evident in B&H during 
the last decades. There has been an increasing number of dry days, while the 
number of days with intense rainfall has also increased (Trbić et al., 2013, 2014; 
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Popov et al., 2019). The occurrence of these phenomena in B&H, coupled with 
rising temperatures, leads to more intense and extreme droughts, especially during 
the summer period (Trbic et al., 2022). During the past decade (2001–2010), 
Žurovec et al. (2011) identified 24 months as dry in central B&H. In the recent 
past, Điderlija et al. (2023) identified a lack of precipitation, negative SPI, and 
high temperatures during 2017 in the Sarajevo canton area of B&H. Similarly, in 
the basin of the Sana River, during 2016 and 2017, deficiencies in precipitation 
and negative SPI were observed at the monthly level, indicating the occurrence of 
meteorological drought. Considering the time series, these occurrences were not 
temporally continuous during 2016, and therefore did not show characteristics of 
severe meteorological drought. In contrast, during 2017, reduced precipitation and 
negative SPI were identified continuously over a four-month period (from May to 
August). The occurrence of meteorological drought with this duration can have 
serious consequences for the geographical environment and the occurrence of 
other types of droughts. According to the results of Čadro et al. (2017), in the 
time period from 1961 to 2010, the occurrence of hydrological drought was noted 
several times in the lower course of the Sana River. Within the results of this 
research, there is a clear temporal coincidence of periods with lower precipitation 
and lower water levels in the main course of the Sana River during 2016 and 2017. 
This phenomenon indicates that meteorological drought influenced the 
occurrence of hydrological drought. Taking into account the presented results 
regarding the occurrence of meteorological and hydrological droughts during 
2016 and 2017, as well as the agricultural potential of this geographical 
environment (Korjenić, 2012), it is assumed that these occurrences could have 
significantly affected the occurrence of agricultural, as well as socio-economic 
drought during the reference years. 

The identification, mapping, and monitoring of agricultural drought at the 
study area level were conducted by calculating the TCI, VCI, and VHI indicators. 
Taking into account the planting and harvesting calendar of major crops in B&H 
(Bajić et al., 2022), agricultural drought monitoring with the calculation of these 
indicators was performed with an instantaneous assessment in July of the 
reference years. 

Monitoring agricultural drought involved creating maps categorizing drought 
according to TCI and VCI values (Fig. 8). The initial results of TCI and VCI (Fig. 8a-
d) range numerically from -1 to 1. According to Karnieli et al. (2006), negative TCI 
values indicate vegetation stress. In this regard, high temperatures can worsen 
vegetation dryness, leading to elevated vegetation stress levels. Similarly, negative 
VCI values indicate stress and poor vegetation conditions. Conversely, positive 
values of these indices represent healthy or “unstressed” vegetation, indicating areas 
free from agricultural drought. Spatially, negative TCI values (< 0) during 2016 (Fig. 
8a) prevail in the southern part of the river basin, while during 2017 (Fig. 8b), they 
dominantly cover the entire river basin area, indicating pronounced drought. On the 
other hand, negative VCI values (<0) during 2016 (Fig. 8c) are negligibly present in 
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the southern part of the river basin, while during 2017 (Fig. 8d), they are present 
throughout the river basin area, with dominant spatial outlines in the valley of the 
main stream of the Sana River. 

Values of spatially represented indices (ranging from -1 to 1) were 
reclassified according to the recommendation of Kogan (1995a) into the following 
categories: extreme drought, severe drought, moderate drought, mild drought, and 
areas without drought (Fig. 8e-h). During 2016, according to the TCI results 
(Fig. 8e), mild and moderate droughts were identified in the river basin area, with 
these types of drought present in the southern, eastern, and central parts of the 
basin. Similar results during the same year were observed with the VCI indicator 
(Fig. 8g). “Small signs” of drought with negligible consequences are visible in 
the southern and southwestern parts of the basin. During 2017, according to the 
TCI results (Fig. 8f), a dominant spread of severe and extreme droughts was 
identified throughout the river basin area. These results were confirmed by the 
VCI results (Fig. 8h), based on which the occurrence of severe and extreme 
drought in the river basin area was identified. The lack of precipitation, low SPI 
values, and a decrease in the water level of the main stream (from May to August) 
are the main causes of the occurrence of extreme vegetation stress, manifested by 
the deterioration of vegetation “health” throughout the basin, especially in the 
northeastern, western, and southeastern parts of the basin. The occurrence of 
extreme drought is dominant in the valley of the main stream of the Sana River. 
 
 

 
Fig. 8. Mapped and reclassified results of TCI and VCI for the year 2016 and 2017. 
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The overall “picture” of the negative impact of agricultural drought at the 
river basin level was obtained by calculating the VHI and creating a map of 
different drought types based on the results of this index (Fig. 9). The initial 
results of VHI, like other indices, range numerically from -1 to 1, where negative 
values indicate poor vegetation conditions, and positive values indicate good 
vegetation conditions. During 2016 (Fig. 9a), negative values were noticeable in 
a negligible spatial extent in the southern part of the river basin. In contrast, during 
2017 (Fig. 9c), negative values were noticeable throughout the entire river basin 
area. Like TCI and VCI, the VHI index was reclassified into different drought 
categories according to the recommendation of Kogan (1995a) (Fig. 9b,d). 
According to the results from 2016 (Fig. 9b), the category representing areas 
without drought dominates the entire river basin area. The presence of mild and 
moderate agricultural drought categories is observed in the southern part. On the 
other hand, according to the results from 2017 (Fig. 9d), a significant drought 
occurrence is visible. Almost the entire river basin area is affected by some 
category of drought (mild, moderate, severe, or extreme). Severe and extreme 
droughts predominate in the area of the main stream of the Sana River. 

 
 

 
Fig. 9. Comparison of VHI indicator results (2016 and 2017) 



416 

Seiler et al. (1998) confirm in their research results that the VHI (by 
combining TCI and VCI) closely aligns with precipitation patterns in the studied 
areas, and it is of crucial importance in characterizing the spatial extent and 
severity of agricultural droughts. Additionally, Tsiros et al. (2004) and Parviz 
(2016) have confirmed in their research results that VCI and TCI in combination 
yield satisfactory outcomes at the global level when used for drought 
identification, assessing the impact of weather on droughts, and evaluating 
vegetation conditions. According to Gidey et al. (2018), previous studies have 
shown that low values of VCI and TCI, or warm weather, largely indicate stressful 
conditions for vegetation and eventually the occurrence of agricultural droughts. 
Similarly to the results of the mentioned authors, through the results of this 
research at the level of the Sana River basin, a high degree of mutual alignment 
of TCI, VCI, and VHI has been demonstrated, as well as alignment with 
precipitation patterns and water level. The calculation of SPI successfully 
identified the occurrence of meteorological drought, and the consequent 
occurrence of hydrological drought. These droughts acted as triggers for the 
occurrence of agricultural drought, which was successfully identified by 
calculating TCI, VCI, and VHI. Marufah et al. (2017) have shown through their 
research results that it is possible to establish the duration, spatial distribution, 
severity, and category of agricultural drought using VHI. Similarly, during 2016 
and 2017, the spatial extent of agricultural drought was identified in the Sana 
River basin. Moderate drought was observed in 2016 to a negligible extent, while 
severe and extreme drought were observed dominantly in the Sana River valley 
in 2017. 

During 2017, agricultural drought resulted in the manifestation of socio-
economic drought. According to the report of the Ministry of Foreign Trade and 
Economic Relations in Bosnia and Herzegovina (MOFTER, 2017), there was a 
decrease in yields and total production of crops, vegetables, fruits, and grapes at 
the national level. The most significant negative impact of the drought was 
observed in the corn crop, with a yield of 3.7 t/ha, which was 39% lower than the 
yield achieved in the previous year. The reduced corn yield per hectare also led to 
a 40% decrease in the total corn production. The yield of wheat was lower by 6%, 
with a yield of 4.1 t/ha, while the yield of potatoes was lower by 21%, with a yield 
of 9.6 t/ha, during 2017 compared to 2016. Additionally, according to the 
aforementioned report, significant crops with a decline in yields included: 
soybeans (-36.95%), carrots (-35.92%), green corn (-33.35%), peas (-29.51%), 
grass-clover mixtures (-29.40%), cabbage (-26.15%), tobacco (-23.97%), white 
onion (-23.40%), black onion (-21.45%), alfalfa (-21.21%), tomatoes (-19.10%), 
clover (-18.56%), peas (-13.27%), green lettuce (-11.07%), peppers (-10.85%), 
cucumbers (-10.79%), strawberries (-4.19%), and watermelons (-2.13%). 

Monitoring of socio-economic drought at the level of the Sana River basin 
was conducted by comparing agricultural yields at the study area level for the 
period of 2016 and 2017 (Fig. 10). Yield data were aggregated at the municipal 
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level and included the yields of the following crops: wheat, corn, barley, potatoes, 
apples, pears, and plums. During 2017 compared to 2016, a decrease in potato 
yield by 26.39% (18707 – 13770 t), corn by 41.36% (92803 – 54416 t), barley by 
1.13% (6885 – 6807 t), potatoes by 20.76% (61692 – 48882 t), pears by 19.57% 
(4507 – 3625 t), and plums by 63.07% (25650 – 9472 t) was identified. A 
negligible increase in apple yield was observed during the observed period, 
specifically by 2.02% (9134 – 9287 t). 

 
 
 
 

 
Fig. 10. Comparison of agricultural production yields for selected crops 

 
 
 

The presented data clearly indicate that the occurrence of agricultural 
drought had serious consequences for agricultural yields in 2017, and that it also 
contributed to the manifestation of socio-economic drought. The sensitivity of the 
agricultural sector to drought is largely reflected in its dependence on land and 
water resources affected directly or indirectly by drought. Additionally, according 
to Zurovec et al. (2015), significant challenges for the agricultural sector in B&H 
stem from the complex governance structure, whereby all levels of authority 
(from local to national) have jurisdiction over planning and management in 
agriculture. For these reasons, it is necessary to invest additional efforts in 
activities, measures, processes, and plans aimed at mitigating drought. Some 
examples of good practices and implemented activities include establishing 
methods for calculating drought indices, processing time series data, analyses and 
mapping (using GIS), as well as using software for irrigation planning during 
crisis situations. By enhancing the capacity for drought preparedness and 
management, including the formulation of comprehensive manifestation plans at 
the local and national levels, B&H could further develop comprehensive 
vulnerability assessment approaches that incorporate remote sensing methods and 
techniques for drought monitoring and management. This would entail the 
implementation of effective mitigation strategies, as well as the creation and 
improvement of policies for planning and responding to crisis situations. 
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5. Conclusion 

Modern technologies and data collection methods, such as GIS and remote 
sensing, offer the possibility of advanced monitoring of natural disasters like 
droughts. Using these technologies, it is possible to identify and track negative 
occurrences in space, conduct assessments of their harmful impact, and assist in 
the development of projects to rehabilitate degraded areas. So far, there is a 
limited number of drought studies in the territory of B&H, while integrated 
research based on remote sensing about droughts, their causes, and consequences 
is almost non-existent for now. 

Spatio-temporal monitoring at the study area level for a defined time period 
(2016 and 2017), through satellite data processing, identified the onset of drought. 
CHIRPS satellite precipitation data, available from 1981 to nearly real-time, 
enabled efficient monitoring of precipitation changes over a wide time range 
(1981–2023). Based on the mentioned data, a precipitation deficit was identified 
for the observed time period (2016 and 2017), the standardized precipitation 
index, SPI, was calculated, and the occurrence of meteorological drought was 
established. The lack of precipitation led to a decrease in the average mid-level 
water level of the Sana River, and consequently, the the occurrence of 
hydrological drought. These events directly impacted the manifestation of 
agricultural drought during the period of intensive agricultural activities (planting 
and harvesting). Processing MOD13Q1 and MOD11A2 satellite data calculated 
various temperature and vegetation indices, and the occurrence of agricultural 
drought was identified and mapped. It should be noted that higher spatial 
resolution of satellite data for mapping agricultural drought would contribute to 
more precise results of spatial drought identification compared to those presented 
in this study. The identified agricultural drought affected agricultural production, 
through reduced yields, and consequently led to the onset of socio-economic 
drought. By analyzing statistical yield data, socio-economic drought was 
identified in the study area, with a deficit in yields of wheat, maize, barley, 
potatoes, pears, and plums. 

The results of the research can be valuable to relevant institutions for drought 
monitoring, timely warning of its occurrence, and for the development of studies 
for drought adaptation and mitigation in river basin areas. Further advancement 
in research based on the presented results would involve the application of 
supervised classification processes of land use with elements of precision 
agriculture. This process would entail detailed classification of various 
agricultural crops in the study area. Integrating this type of classification into the 
presented research would contribute to a clearer spatial identification and 
reflection of agricultural drought on individual agricultural crops in the study area. 
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